우주/은하/ 태양/지구 *크기/거리/속도 *생명체출현 *수명 *역사시대 BC3000 **Hubble Space Telescope 허블우주망원경-,--길이가 13m 렌즈구경만2.4m-지구상공559 km[-96분마다 > science 과학

본문 바로가기

science 과학

우주/은하/ 태양/지구 *크기/거리/속도 *생명체출현 *수명 *역사시대 BC3000 **Hubble Space Telescop…

페이지 정보

profile_image
작성자 canada
댓글 0건 조회 401회 작성일 24-01-02 21:17

본문

우주/은하/ 태양/지구 *크기/거리/속도 *생명체출현 *수명 *역사시대 BC3000

Hubble Space Telescope 허블우주망원경-,--길이가 13m 렌즈구경만2.4m-지구상공559 km[-96분마다


** 지구에서 태양까지는 약 1억5천만km로 빛이 초속 30만㎞- 8분19초 (1초에 지구의 둘레를 7바퀴 반)
** 1시간에 10억 킬로미터(km)--일년에 약 9조 4600억 (km), 즉 1광년(약 1 billion km)
** 보이저1호 40년 만에 태양권계 진입 ** 태양과 해왕성의 거리 약 46억km가 태양계의 반지름
** 우리은하의 반지름은 약 5만 광년 ** 지구에서 우주의 가장자리까지의 거리는 (465억 광년 또는 4.40×10^26m)

** 우주의 나이- 13.7 billion years (137억 년)
** 태양계-4.57 billion years ** 지구-4.54 billion years ** 달-4.53 billion years
*** 지구45억4300만년 (4.54×10년9±1%)

** 시생대 Archean Eon-4.billion ** 포유류 Mammalia- 200 million ** 공룡 200 - 145 million

** “호모 사피엔스”(Homo sapiens) 20만년 전 ** 농경 BC 9050년
** 청동기시대 BC 3500 ** 역사시대 BC 3000

** 수명 히드라- 작은보호탑 해파리 불로불사.
ENDOLITHS (10,000 년). 유리해면류 10,000.
백합조개 500. 코끼리 거북이 300.

인간 100. 침팬지 50. 말 30 -----------
**모든 동물 중에서는 가장 큰 흰긴수염고래는 몸길이 33 m에 무게는 190 ton,
아프리카코끼리 8m 8 ton, 낙타 3 m 600 kg ----------- ☜

=======================================================

은하수(銀河水, 영어: milky way / Galaxy)는 태양계가 속해있는 은하(우리 은하)이다. 국부은하군의 일부인 막대 나선 은하로, 우주에 있는 약 2조개의 은하 가운데 하나이다.

또 영어로는 은하수를 '밀키웨이(Milky Way, 젖이 흐르는 길)'라고 합니다. 갓난아기였던 헤라클레스가 여신 헤라의 젖을 너무 힘차게 빨아 흘러나온 젖이 하늘에 강을 이뤘다는 그리스 신화에서 유래한 명칭이죠. 그래서 은하계를 '밀키웨이 갤럭시(Milky Way galaxy)'라고도 부릅니다.

관측 가능한 우주에는 1,700억 개 이상의 은하(Galaxy)가 있는 것으로 추정됩니다. 은하계는 이러한 우주의 수많은 은하 중 태양계가 포함된 '우리 은하'를 뜻하죠. 각각의 은하는 최소 1,000만 개에서 최대 100조 개의 별(항성)들로 이루어져 있습니다. 그러나 다른 은하는 은하계로부터 수백만 광년에서 수십억 광년 떨어져 있기 때문에 맨눈으로는 보기 어렵습니다. 우리 눈으로 볼 수 있는 별들은 거의 우리 은하에 속해있는 것들이고 지구에서 1,000광년 정도 떨어진 별이 대부분입니다.



기차에 타고 있을 때는 기차의 모습을 잘 알 수 없습니다. 창밖으로 지나가는 다른 기차의 외형과 기차의 실내 모습을 보고 적당히 유추하는 것만 가능하죠. 이와 마찬가지로 지구는 은하계의 내부에 있기 때문에 우리 은하의 전체 모습을 볼 수 없습니다.
또 은하 중심에 성간 먼지와 가스 구름이 가시광선을 차단해서 시야도 흐립니다. 만약 은하계를 한눈에 보고 싶다면 적어도 수만 광년의 거리를 가야 가능합니다.

은하계의 크기가 저렇게 크다면 모양은 어떻게 생겼을까요? 우주에 존재하는 은하의 60%가량은 '나선은하(Spiral galaxy)'입니다.
나선은하는 은하핵에서 소용돌이치듯 나선팔이 뻗어난 얇은 원반 형태를 띠고 있습니다.
은하수가 강처럼 보이는 이유는 우리 은하계가 나선은하이기 때문에 은하 원반면에 걸쳐 있는 지구에서는 기다란 띠처럼 보이기 때문이죠.



또한, 나선은하의 3분의 2가량은 중심부에 막대형 구조를 가진 '막대 나선은하(Barred spiral galaxy)'입니다. 나선은하가 우주에서 가장 흔한 형태의 은하라면,
그 나선은하에서도 막대 나선은하가 보편적인 형태인 셈이죠.
천문학자들은 2005년 스피처 우주망원경을 통해서 은하계가 중심 막대 구조를 가진 막대나선은하라는 사실을 밝혀냈습니다.



은하계의 전체 모습을 보지 않았는데도 막대나선은하라는 구조까지 알아낸 것이 신기하지 않나요?
이렇게까지 많은 것을 알아낼 수 있었던 것은 다른 은하를 연구해서 은하 모델을 구축했고 우리가 관측한 은하계에 자료를 대입하여 추정한 결과입니다.

우리 은하는 우주에서 상당히 큰 은하에 속한다.
특히 가스가 풍부한 나선 은하 중에서는 질량이나 항성 숫자로 봤을 때 안드로메다 은하와 우리 은하만큼 거대한 은하가 희귀하다. 가까운 은하들 중에서는 정상나선은하인 바람개비 은하가 반지름에서 둘을 능가하지만, 총 질량은 비슷한 수준이다.

우리 은하의 총 질량은 태양 질량의 약 1~3조 배이며
이 질량의 대부분은 암흑물질이 차지하고 있다.
암흑물질을 제외하고 항성과 가스 등을 포함한 일반물질의 질량은 태양의 1000억 배 정도이다.
우리 은하에 소속된 항성의 갯수는 5,000억~6,000억 개 정도로 추산된다.
국부 은하군에서 가장 큰 안드로메다 은하는 소속 항성이 1조 개를 넘는다.
중심에는 태양 질량의 약 400만 배 정도 규모의 초거대 블랙홀이 위치하고 있다.

우리 은하의 지름은 약 10만 광년 정도이고
중심핵의 직경은 약 1만 광년, 두께는 1만 5천 광년 정도이다.
나선팔 부분, 항성이 집중된 영역의 두께는 1천~2천 광년 정도의 크기인 것으로 추산되며, 그 외의 가스층까지 포함하면
디스크의 두께는 1만 광년이 넘는다.

=====================
Hubble Space Telescope 허블우주망원경-,--길이가 13m 렌즈구경만2.4m-지구상공559 km[-96분마다

Hubble_Space_Telescope
The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned both as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA's Great Observatories. The Space Telescope Science Institute (STScI) selects Hubble's targets and processes the resulting data, while the Goddard Space Flight Center (GSFC) controls the spacecraft.[8]

https://en.wikipedia.org/wiki/Hubble_Space_Telescope
====================
허블 우주 망원경
1990년 4월 24일 NASA가 궤도에 올린 우주 망원경으로, 위성 자체가 거대한 망원경이다. 지구 상공 559km[1]에서 96분마다 한 번씩 궤도를 돌고 있다. 이름은 팽창 우주론을 제창했던, 미국 천문학의 태두라고 할 수 있는 에드윈 파월 허블에서 따왔다.Jan 31, 2023

https://namu.wiki/w/%ED%97%88%EB%B8%94%20%EC%9A%B0%EC%A3%BC%20%EB%A7%9D%EC%9B%90%EA%B2%BD
허블 우주 망원경 - 나무위키:대문
========================================
길이가 13m나 되며 렌즈의 구경만 2.4m에 달하는 등[3][4], 인공위성으로서는 매우 큰 편이기 때문에 일반 발사체에 실려 궤도에 올라가지 않고 우주왕복선 미션인 STS-31 디스커버리에서 궤도에 전개되었다.[5][6] 당시 STS-31 미션의 파일럿이었던 찰스 볼든은 이후 버락 후세인 오바마 행정부에서 NASA 국장에 임명되었다. NASA에서는 25주년을 성대하게 기념하려는데 현 국장이 그때 임무를 수행한 파일럿 본인이라 애매한 모양.

발사 직후 뿌연 사진이 전송되어 원인을 확인하는 과정에서 광학장치에 문제가 발견되었다[7][8]. 이로 인해 의회로부터 수십억 불 들여 헛짓거리 했다고 비판을 받았으나, NASA는 이를 바로잡기 위해 우주왕복선을 보내 주 반사경을 수리했고, 소프트웨어적으로도 여러 가지 스킬을 써서 정상 성능을 찾을 수 있었다. 이후에도 네 번에 걸쳐 교정과 유지보수를 하면서 현재는 초기보다도 더욱 선명한 사진을 지구로 보내오고 있다.

수리가 어떻게 진행되었는지 궁금하다면 우주인들의 미션 보고 프레젠테이션 영상을 찾아보자. 어떻게 검색해야 할지 모른다면, 허블을 수리한 미션들은 역대 총 5회 있었음을 상기하자. STS-61(엔데버), STS-82(디스커버리), STS-103(디스커버리)[9], STS-109(컬럼비아)[10], STS-125(아틀란티스)로, 너무 일찍 잃은 챌린저를 제외한 모든 오비터들이 최소 한 번씩 허블에 갔다온 셈. NASA 특유의 골때리는 미션 명명법을 못 외우겠다면 그냥 엔데버 허블 등의 검색어로 찾아봐도 얼추 나온다. 참고로, 마지막 미션인 STS-125는 미션을 발사 과정부터 IMAX 3D 영화로 만들어서 레오나르도 디카프리오를 나레이터로 데려와서 블루레이로 출시하기도 했다. 한국어판은 안철수가 맡았다. 두 나레이터가 너무나 다른 느낌이다[11]

external/upload....

오차보정 전(왼쪽)과 후(오른쪽)의 M-100 은하 사진. 포토샵 보정이 아닌 구면수차를 보정하는 장치를 만들어서 수리해 보정된 결과의 사진이다.
3. 특징[편집]
대기권의 간섭을 거의 받지 않기 때문에 지구상에서는 얻기가 힘든 선명한 사진을 전송하고 있다. 지구 대기에 의한 효과를 무시한다는 점은 천문학에서는 거의 치트키에 가까운 장점인데, 허블 망원경보다 2~3배 큰 지상 거대 망원경들이 이 효과를 줄이기 위해 별짓을 다해도[12] 쏘아올린 지 30년이 넘은 이 망원경의 해상도를 따라가지 못하고 있다는 점만 봐도 알 수 있다. 멀리 있는 천체의 형태를 구분하는 능력인 분해능에 한해서는 넘사벽에 가깝다. 단, 크기의 한계가 있다 보니 지상 망원경들에 비해 집광력이 떨어져서 어두운 천체를 관측하기 위해서는 며칠간의 긴 노출을 필요로 하기도 한다. 11일에 걸친 노출을 통해 만들어진 허블 울트라 딥 필드가 대표적이다.

이렇게 현 시점에서 봐도 굉장한 성능의 망원경인데 왜 태양계의 천체는 찍지 않느냐는 의문을 품는 사람들이 많다. 그토록 멀리 있는 은하계나 성운의 사진도 선명하게 얻을 수 있는 거대 망원경이라면, 보이저 2호 이후 탐사선이 들린 적이 없는 천왕성, 해왕성의 현재 모습이나, 뉴 호라이즌스 호 덕택에 간신히 확보할 수 있었던 명왕성의 실물 사진을 간단하게 얻을 수 있지 않느냐는 건데, 상식적으로는 당연한 이야기 같지만 실제로는 그렇지 않다. 물론 허블 망원경으로 태양계 내 명왕성 등 여러 천체들을 촬영한 적도 있지만 먼 은하들을 찍을 때와는 비교가 안 되는 처참한 퀄리티를 보여준다. 이는 멀리있는 은하가 가까이 있는 태양계 행성들보다 압도적으로 더 크기 때문이다. 무려 7200만 광년 떨어져 있지만 그 크기가 5만 광년에 이르는 거대한 나선은하 NGC 5584는 선명하게 잘 찍히지만, 상대적으로 훨씬 가까운 명왕성은 고작 2,400km 이기 때문에 허블 망원경으로 명왕성을 찍으면 고작 2픽셀 정도로 너무 작아서 정보가 거의 없다. 참고 기사 정말 쉽게 비교하자면 롯데월드타워나 63빌딩같이 크고 높은 빌딩은 수십 km 떨어진 지점에서 촬영해도 그 모습을 또렷이 찍을 수 있는 반면, 똑같은 지점에서 동일한 화각으로 10m 떨어진 조약돌을 촬영했을 땐 알아보기 힘들 만큼 매우 작게 찍히는 것과 비슷하다. 허블 망원경으로 얻은 선명한 형상은 대개 거대은하 또는 성운 단위이며, 태양계 외의 항성을 촬영하지 못하는 것 또한 이와 같은 원리 때문이다.

반대로, 달이나 금성같이 아주 가까운 곳에 있는 천체의 경우 전체를 담지 못하고 일부분을 또렷히 찍을 수 있으나, 지나치게 밝아서 허블의 민감한 센서가 고장나버린다. 그래서 적당하게 찍을 만한 천체가 화성부터인데, 그러면 기존 지상 망원경 수준으로도 커버가 되는 화질이 되어서 특별한 메리트가 없다. 그래도 다 찍어보긴 했었다.
4. 수리 및 개선[편집]
Servicing Mission 1: STS-61(엔데버)
첫 수리는 1993년 12월이었다. 처음에 허블우주망원경은 기대와 달리 흐릿한 사진을 보냈다. 연구진은 제1 반사경이 타원형으로 깎여야 하는데 완전한 구면으로 깎여 초점이 흐려졌다는 것을 밝혀냈다. NASA는 당시로써 사상 최대 규모의 우주 수리작업을 진행했다. 수리비는 6억 2900만 달러가 들었다. 우주 왕복선 인데버호를 발사해 11일 동안 11곳의 장비, 부품을 교체 및 설치를 진행했다. 초점이 안 맞았던 제1 반사경은 고속광도계가 광학교정 장치(COSTAR)로 대체되었고, 관측 카메라(WFPC)도 내부에 교정광학 장치를 갖춘 광시야 및 행성 관측 카메라2(WFPC2)로 교체되었다. 햇빛을 받으면 심하게 떨렸던 태양열 집열판과 태양열 집열판으로 작동되는 전자 장비 역시 교체되었다. 전자 장치들도 작동이 제대로 되지 않아 수리하지 않으면 폐기해야 할 상황이었지만, 망원경 조준계의 자이로스코프 네 개와 두 개의 전자 제어유닛 및 전기 부품, 자력계 두 개도 교체되었다. 내장된 컴퓨터는 보조 처리 장치가 추가되면서 성능이 개선되었다. 수리를 담당한 4명의 과학자가 한 번에 6~7시간 걸리는 우주유영을 5회 이상 했다. 햇빛을 받을 때는 작업을 할 수 없어 태양의 반대편에 들었을 때 플래시에 의지한 채 어두운 상태에서 작업해야 하는 어려움도 있었다. 이 첫 수리 후 허블의 선명도는 50% 높아졌고, 허블의 궤도도 더 높은 곳막 상승했다.
Servicing Mission 2: STS-82(디스커버리)
두 번째 수리는 1997년 2월에 첨단장비 교체작업을 위해 이뤄졌다. NASA는 7명의 우주비행사와 장비를 실은 디스커버리호를 쏘아 올렸다. 우주에 떠 있는 먼지 안개를 뚫고 은하 중심부 깊숙한 곳에 있는 블랙홀의 모습까지 탐지해낼 수 있는 장비가 장착됐다. 미션 2에서는 GHRS와 카메라(FOS)를 각각 우주망원경 영상 분광 카메라(STIS)와 근적외선카메라 및 다중천체 분광 카메라(NICMOS)로 바꾸었으며, 기존의 공학 및 과학 테이프 레코더(ESTR)도 신형 솔리드 스테이트 레코더(SSR)로 교체하고 단열체를 수리하였다. 분광 카메라(NICMOS)는 고체 질소로 이루어진 히트싱크를 포함하고 있어 기구로부터 열잡음을 줄일 수 있지만, 설치된 지 짧은 시간 만에 예측하지 못했던 열팽창으로 히트싱크의 부품이 광학 방해판과 접촉하였다. 이 때문에 기구의 온도 상승률이 높아져 본래 예상 수명이 4.5년이던 것을 약 2년으로 줄이는 결과를 초래하였다.
Servicing Mission 3A: STS-103(디스커버리)
세 번째는 미션 3A는 1999년 12월에 수행되었다. NASA는 항법장치인 자이로스코프에 이상이 있다는 것을 발견하고 내장된 자이로스코프 여섯 개 중 세 개가 고장 난 이후 당초 계획되었던 미션 3를 두 차례의 임무로 분할하였다. 임무 개시로부터 수 주일 전에 고장 난 자이로스코프가 네 개까지 늘어나면서 망원경의 렌더링이 과학 관측을 수행할 수 없었으며, 이후 한 달이 넘도록 자료를 받지 못하고 있는 상황이었다. 그래서 미션 3A에서는 자이로스코프 여섯 개를 모두 교체하고, 정밀유도 센서와 컴퓨터까지 교체하였으며, 축전지의 과충전을 막기 위해 전압/온도 개선 키트(VIK)를 설치하고 단열재 블랭킷도 교체하였다. 또한, 알루미늄 피복제와 지상과의 송수신 장비도 바꿨다. 새로 설치된 컴퓨터는 교체 전의 DF-224보다 처리 능력이 20배 빨랐으며 메모리 용량도 여섯 배나 컸다. 컴퓨터가 연산 작업 일부를 지상에서 우주선으로 할당하면서 처리율을 높였고 현대적인 프로그램 언어를 사용할 수 있게 되면서 임무 소요 비용을 절감하였다.
Servicing Mission 3B: STS-109(컬럼비아)
2002년 3월엔 최대 업그레이드 작업이 이뤄졌다. 컬럼비아에서 수행된 미션 3B는 새로운 기구의 설치 작업을 부여받아서 기존 카메라(FOC, 정밀유도 센서를 제외한 마지막 1세대 기구)를 7600만 달러짜리 탐사용 첨단관측 카메라(ACS)로 교체하였다. 따라서 허블망원경에 탑재된 모든 기구가 내장형 주거울 수차 교정 장치를 가지면서, 기존의 광학교정 장치인 COSTAR는 필요가 없어졌다. 또한 폐순환 냉각기를 설치하여 분광 카메라(NICMOS)의 기능을 되살렸으며 태양전지판도 다시 교체하여 기존 동력에서 30%를 더 높였다. 이 작업을 통해 허블의 시력은 10배 높아졌다. 전력 통제 장치도 교체하는 데 성공했다. 특히 우주에서 이뤄진 이 작업은 많은 전선과 장비들이 엉켜 있어 잘못될 경우 망원경을 아예 못 쓰게 되는 역사상 가장 어려운 우주유영으로 평가됐다.
Servicing Mission 4: STS-125(아틀란티스)
마지막 서비스 미션인 STS-125는 수리도 수리지만 천문학계의 눈물겨운 대국민 호소, 그리고 STS-400이라는 엄청난 비상 구조 작전으로도 유명하다. 2009년 5월 우주왕복선 애틀란티스호가 다섯 번째 수리를 위해 발사됐다. 다섯 번째 수리에서 미션 4에서 자료처리 장치의 대체품을 설치하였으며, 관측 카메라(ACS)와 영상 분광 카메라(STIS) 시스템의 수리 및 니켈수소전지(배터리)의 성능을 향상했고, 그 외 자이로스코프 등 여러 부속품을 교환하였다. 또한 두 대의 새로운 관측기구, 광시야 카메라3(WFC3)과 우주 기원 분광 카메라(COS)를 설치하고 연포획 및 랑데뷰 장치(SCRS)를 설치하여 후일에 다른 유무인 임무를 통해 허블의 랑데뷰와 포획 및 안전한 처리를 가능하게 하였다. 고장 나서 수리가 불가능한 관측 카메라(ACS)의 고해상도 채널을 제외하고는 미션 4의 모든 작업을 성공적으로 끝마쳤다.
5. 차기 망원경[편집]
5.1. 낸시 그레이스 로먼 우주망원경[편집]
external/upload....

2012년에 NSA와 관련된 기술협력부서인 NRO(국가정찰국)에서 구세대 모델이라고 안 쓰고 창고에 쳐박아 두었던 광학첩보위성 2대를 기부받았다. 키홀 위성 11세대 버전이라고 하며[13], 주 렌즈 크기는 동일하지만 시야각은 100배/초점은 더욱 또렷하게 맞출 수 있다는 듯하다. NASA에서는 그간 찬드라 엑스선 관측선, 스피처 X선 망원경, 페르미 감마선 우주 망원경, 제임스 웹 적외선 우주 망원경을 운용하고 있지만, 가시광용 망원경은 딱히 후계기가 없어서 염려했는데 NSA 덕분에 그 문제가 해결된 것. 다만, 보안 모듈 교체 및 우주 이송을 위한 시스템 개발에 시간이 소요되어, 발사일자는 2019년으로 잡혀 있었다가, 이마저 연기되어 2025년으로 계획되어 있다.

이 차세대 망원경은 '광각 적외선 우주망원경'으로 명명되었으며, 헤일로 궤도를 돌며 가시광선 및 근적외선 관측 임무를 수행할 예정이다. 이 망원경이 우주에 올라 가고 나면 허블 우주 망원경은 태평양으로 폐기될 예정이다.
5.2. LUVOIR (계획 중)[편집]
이외에 LUVOIR로 명명된 차세대 우주망원경 계획도 허블 우주망원경의 후속계획으로 볼 수 있다.
6. 대중매체에서의 등장[편집]
문명 5에서 불가사의로 등장하는데, 명성답게 과학자 위인을 2명이나 소환하고 우주선 생산을 빠르게 해주는 효과가 있다.
영화 아마겟돈 초반부에서 미국 대통령이 지구로 날아오는 소행성을 관측하기 위해 허블 망원경을 가동하라고 명령하는 장면이 나온다. 사실 허블망원경은 렌즈의 사이즈가 작아서 아주 먼거리의 천체를 관측하는 데는 지상의 대구경 망원경보다 오히려 나쁠 수 있지만, 태양계 내부처럼 상대적으로 근거리의 물체를 세밀하게 관측하는데는 대기의 산란이 없기 때문에 가장 좋은 수단이다. 사실 지구에 직격가능성이 있는 소행성이 존재한다면 지상이건 궤도상이건 모든 천체망원경이 거기에 집중될 테니 과학적인 근거가 있어서 명령을 내렸다기 보다는 인상적인 장면을 보여주기 위한 연출에 가깝다.
단편영화 Kung Fury에서는 초반 전투신에서 잠깐 나오는데 크게 손상되어 버린다. 근데 이 작품의 배경이 1985년(...)이다. 애초에 하나부터 열까지 일부러 말도 안 되게 만든 작품이니...
영화 그래비티의 처음 장면은 이 허블 우주 망원경이 고장나서 수리하는 장면으로 시작된다. 그리고, 우주쓰레기에 맞아 스페이스 셔틀과 함께 완전히 박살난다.
7. 기타[편집]
위클리 월드 뉴스에서 허블 망원경에 천국의 모습이 포착되었다는 합성 사진을 만든 적이 있다. 위클리 월드 뉴스는 신문의 모든 기사가 주작이라고 천명하는 유머신문이기 때문에 밝혀지고 말고 논쟁의 여지가 없이 당연히 합성이나, 지금도 기독교 계열 사이비 종교단체에서 홍보를 할때 '외신 보도'라며 이 사진을 내놓기도 한다.
허블 우주 망원경이 찍은 사진은 모두 PD-Hubble에 따라 퍼블릭 도메인으로 이용이 가능하다. #
2018년 10월 7일, 자이로스코프 이상으로 인해 안전 모드에 들어갔음이 발표되었다. ## STSci의 레이첼 오스튼 박사에 따르면 현재는 상술된 STS-125 미션 당시 전부 새로 넣은 여섯 자이로스코프 중 2개만이 온라인 상태로, 안전모드로 전환하여 불량인 3번째 자이로스코프를 복구하려 하고 있다. 27일 수리를 마치고 다시 임무를 수행하고 있다. 10월 22일 기록을 보면 껐다 켠 걸로는 해결이 안 되어서 반대방향으로 동작시키고 자이로 저속 운용 모드를 추가하여 해결을 했다고 한다. #
2021년 6월 17일, 내부 메모리 보드 불량으로 모든 관측이 중단 되었음이 발표되었다. NASA는 현재 백업 메모리로 전환을 시도했지만, 그보다 더 큰 문제, 즉 메인 컴퓨터와 더불어 인터페이스 문제라 판단하고, 2009년에 붙인 백업 컴퓨터가 잘 동작하기만 기도하고 있다. 다행히 전원공급부의 전압조정기 문제로 밝혀져 백업 컴퓨터로 전환하고 7월 16일 정상적 관측을 재개하기 위해 준비하고 있다.
한편 중국 우주정거장 톈궁도 2024년부터 허블과 비슷한 체급의 지름 2m짜리 우주망원경을 갖출 예정이다. # 이 망원경의 가칭은 중국 우주정거장 망원경(Chinese Space Station Telescope (CSST))이다.
8. 관련 문서[편집]
망원경 / 우주 망원경
스피처 우주 망원경
제임스 웹 우주 망원경
찬드라 엑스선 관측선
케플러 우주망원경
페르미 감마선 우주 망원경
TESS
허블 울트라 딥 필드
9. 외부 링크[편집]
유럽우주국 ESA 선정 허블망원경 최고의 사진 25장
[1] 허블이 나가기 전에 폭발했던 챌린저를 제외한 모든 오비터들이 한 번씩 허블과 만났다.
[2] 컬럼비아가 무사히 완수했던 마지막 미션 역시 허블의 4차 서비스 미션인 STS-109였다.
[3] 최초 디자인은 구경 3m 짜리였다. 다만 KH-11의 매커니즘을 상당수 활용하게 되면서 구경이 KH-11과 동일한 크기가 되었다.
[4] 이 내용을 근거로 국내 음모론자들 사이에서 허블 우주 망원경은 사실 정찰위성 키홀 위성을 그대로 쓰는 거다! 라는 소리가 퍼지고 있는데 한마디로 헛소리다. 허블을 개발하면서 키홀의 매커니즘을 상당수 활용한 것은 맞지만, 미국 NASA 홈페이지를 비롯해서 그 어디도 그에 대한 레퍼런스는 없다.
[5] 원래 STS-61-J 미션에서 발사하기로 예정되어 있었지만 STS-51-L 챌린저 참사가 터지며 셔틀 미션들이 싹 취소되거나 연기되었다. 이 허블 전개 미션은 원래 디스커버리 대신 아틀란티스를 쓰기로 되어 있었으며, 이후 팀 재구성 과정에서도 NASA의 높으신 분들을 깠던 기존 사령관 존 영 대신 로렌 슈라이버를 투입했다.
[6] 1986년 초에 이 챌린저 참사가 터지며 허블 전개까지 취소된 것은 사실 타격이 이만저만이 아니었다. 1987년에 초신성 1987A가 발견되고 소련이 자기네 크고 아름다운 자외선 우주망원경 아스트론으로 1987A를 관측하였다고 보도하며 미국 천문학자들은 열폭의 도가니에 빠져야 했다는 눈물겨운 사연이 전해진다. 참고로 STS-51-L의 미션이었던 핼리 혜성 관측 임무도 전미가 우는 사이 소련은 아스트론으로 유유자적 관측을 해냈다. 지못미(...)
[7] 주 반사경의 구면수차가 원인이었다. 이 회사는 NSA의 광학첩보위성을 여러 번 만든 회사여서 이 사업도 수주했는데 예상 외의 결과가 나온 것. 이 때 반사경 가장자리의 오차는 사람 머리카락 두께의 1/50(약 2.2 μm)이었다.
[8] 거울 제작중 사용하는 표면 측정장비 계측막대 끝의의 위치를 측정할때 사용하는 계측막대 덮개의 코팅이 살짝 벗겨진 것이 원인이라고 한다. 코팅이 벗겨지며 계측막대 끝이 아닌 계측막대 덮개를 끝으로 인식했다고.
[9] 당초 기획되었던 정기 서비스 미션 STS-109/HST-SM3 이전에 자이로스코프 6개 중 3개가 나가버리며 긴급 보수 미션을 기획했다. 1999년 12월에 발사되며 20세기, 제2천년기의 마지막 유인 우주비행으로 기록되었다.
[10] 이 미션은 컬럼비아의 마지막 성공 기록이었다. 컬럼비아의 이 다음 미션이 귀환 도중 공중분해라는 참극으로 끝난 STS-107이다.
[11] 정치인 안철수의 목소리만 들어봐선 감이 잘 안 오겠지만, 생각보다 목소리나 발음이 좋아서 나쁘지는 않다. 그보다 이때 당시 안철수는 정치랑 조금도 관련이 없는 석학 교수였으며, 컴퓨터 백신 V3 개발로 유명했던 사람이었다.
[12] 접근성 문제를 무릅쓰고 천문대를 해발 수천 미터의 산 꼭대기, 그것도 건조한 환경을 찾아 남미 사막 한가운데에 짓는 것도 모자라 현대의 보정 기술을 총동원해서 대기 효과를 줄이려고 노력하고 있다.
[13] 현재 버전은 13세대 관련 기사
=========================================================
나무위키


2020년대
솔라 오비터 - 2020년 2월 9일에 발사된 유럽 우주국과 NASA의 태양 탐사선.
아말 - 2020년 7월 20일 발사한 UAE의 화성 탐사선.
톈원 1호 - 2020년 7월 23일 발사한 중국의 화성 탐사선. 탐사 로버 주룽이 2021년 5월 15일 착륙해 탐사를 시작했다.
퍼서비어런스 - 2020년 7월 30일 발사한 미국(NASA)의 화성 탐사선. 2021년 2월 18일 화성에 착륙하였고 지구 외의 조종 가능한 최초의 동력 비행물체인 인지뉴어티를 같이 실어 보냈다.
창어 5호 - 2020년 11월 24일에 발사되어 12월 1일 달에 착륙해, 월석 등을 채취해 17일 지구로 복귀했다.
루시 - 2021년 10월 16일 발사한 소행성 탐사선. 트로이군 소행성들을 탐사한다. 탐사선으로써 가장 많이 탐사가진다.#
다트(DART·Double Asteroid Redirection Test) - 공식 명칭은 이중 소행성 방향 전환 평가. 쌍성계 소행성 65803 디디모스의 궤도를 조금이라도 바꾸는 것이 목표다. 2021년 11월 24일에 발사되었으며, 2022년 10월에 임무 수행. 태양계 탐사 프로그램 1번째 미션이다.
루나 25호 - 2022년 7월 22일 발사 예정인 러시아의 달 탐사선.
다누리 - 2022년 8월 발사된 대한민국의 달 탐사선
프시케 - 2022년 8월 1일 발사예정인 소행성 탐사선. 프시케에 있는 희귀광물 조사가 이뤄진다.
찬드라얀 3호 - 2022년 3분기 발사 예정으로 달 착륙선 실패에 대한 만회하기 위해 기획한 탐사선.
ASTER - 브라질 우주국 최초의 탐사선으로 2022년 ~ 2025년 6월 발사예정인 소행성 (153591) 2001 SN263을 탐사한다.
SLIM - 2022년 발사예정인 JAXA의 최초 달 착륙선
목성 얼음 위성 탐사선(JUICE, JUpiter ICy moon Explorer) - 2023년 4월 발사 계획인 ESA가 기획하고 있다. 목성의 위성인 가니메데, 칼리스토, 유로파를 탐사한다.
유로파 클리퍼(Europa Clipper) - 2024년 4월 10일 발사예정인 NASA의 탐사선. 유로파에 근접궤도를 형성, 탐사한다. 태양계 탐사 프로그램 2번째 미션이다.
로잘린드 프랭클린 - 2024년 발사 예정인 유럽우주기구의 화성 로버. 이름은 DNA 구조 발견에 공헌한 동명의 이름에서 따왔다.
코멧 인터셉터 - ESA와 JAXA의 혜성 탐사선. 2029년 발사 예정
드래곤플라이 - NASA의 타이탄 착륙선. 2026년 발사 예정. 2034년 도착 예정.
다빈치 - 다빈치는 금성 탐사선으로 Deep atmosphere venus investigation of noble gases, chemistry, and imaging애 앞글자들을 따서 이름을 DAVINCI라고 부른다, 다빈치는 대기를 뚫고 들어가 표면까지 하강할 소형 탐사선으로 구성이 돼있다, 2029년 6월 발사 에정, 2031년 도착 에정.
2030년대
스타샷 - 인류 최초의 성간 탐사선. 솔라 세일과 고출력 레이저를 이용하여 광속의 20%까지 가속한 후 알파 센타우리 항성계로 보내진다. 2036년 발사 예정. 2060년대 도착 예정.
2.2. 유인탐사선[편집]
-------------------------------------
1. 개요
2. 역대 탐사선
2.1. 무인탐사선
2.2. 유인탐사선
2.3. 플라이트(Flight)컴퓨터
2.4. 사용된 CPU
3. 나노&마이크로&스몰셋 CPU
4. 큐브셋 CPU
5. 관련 문서
1. 개요[편집]
탐사선(探査船)이란, 지구나 다른 천체를 탐사하기 위해 우주로 쏘아 올린 관측도구를 말한다. 덕분에 가격이 어마어마하게 비싸다. 태양으로부터 멀어지면 태양광판에 닿는 광량이 떨어져서 효율이 기하급수적으로 떨어진다. 때문에 외우주로 나가는 것들은 대부분 원자력 전지를 쓴다. 인류가 만든 것 중 가장 빠르고 멀리 나간 물건들(보이저, 파이오니어 시리즈)이다. 지금도 계속 전파를 보내고 있다고 하니 대단하긴 하다. 참고로 저 보이저, 파이오니어 시리즈엔 외계인이 볼수 있는 동판이나 골든 레코드를 실어놨다.

탐사선 중에 지구나 기타 천체의 궤도에 진입하여 도는 궤도를 도는 것들은 인공위성에 포함되기도 한다.

탐사방법에는 접근 통과 (플라이바이), 표면 충돌, 궤도 선회, 착륙, 로버 등이 있다. 보통 이 순서대로 난이도가 높아지는 편. 과거 우주 경쟁 중에 탐사선 개발이 갓 시작되었을 무렵에는 플라이바이와 충돌선이 많이 개발되었으나, 기술이 발전된 뒤에는 주로 궤도선과 착륙선, 로버가 개발된다. 다만 지표 깊은 곳의 조성을 알아낸다거나 하는 목적으로 작은 탐사선을 충돌시켜 잔해를 분석하는 방식은 현재에도 사용되고, 목적지를 향해 날아가는 도중에 다른 천체의 옆을 지나가는 일종의 플라이바이 역시 사용되고 있다. 이건 단지 탐사 목적 뿐만이 아니라 스윙바이를 통해 속도를 얻기 위한 목적도 있다.

보통 탐사선은 무인 우주선인데, 이유는 위에서 서술했듯이 우리 태양계만 해도 너무 넓어서 유인 탐사선은 한계가 있다. 지구를 벗어나 다른 천체로 가려면 1년 이상은 기본이고 연료를 아끼기 위해 스윙바이로 가속하려면 중간에 경유지까지 설정해야 하기 때문에 시간도 오래 걸린다. 게다가 귀환까지 해야 되고.... 이와 같은 이유로 현재까지 유인우주선인 탐사선은 단 하나 뿐이다.

속도는 겉 모양으로 봐선 엄청 느릴 것 같지만 우주공간의 적은 중력과 행성의 강한 중력, 또는 스윙바이 같은 걸 이용해 총알 속도의 20배 이상으로 날아간다. 그리고 마찰이 사실상 0인 우주공간의 특성상 어딘가에 부딪히기 전까지 저 속도로 영원히 나아가게 된다.

이러한 탐사선과의 통신을 위해 미국을 비롯한 우주개발 선진국들은 심우주까지의 통신을 가능하게 하는 시스템들을 운영하고 있다. 대표적인 것이 미국 NASA에서 운영하는 심우주 통신망(Deep Space Network).
2. 역대 탐사선[편집]
천문학계에서 꽤나 유명한 탐사선들은 다음과 같다.
2.1. 무인탐사선[편집]
1950년대
루나 1호 (Мечта 메치타) - 최초로 지구 중력장을 벗어난 탐사선. (1959년)
루나 2호 - 최초로 달 표면에 도달한[1] 탐사선. (1959년)
루나 3호 - 최초로 달 뒷면을 촬영한 탐사선. (1959년)
1960년대
매리너 2호 - 최초로 금성에 접근비행하여 탐사하는데 성공했다. (1962년)
매리너 4호 - 최초로 화성에 접근비행하여 처음으로 화성표면을 촬영했다. (1965년)
루나 9호 - 최초로 다른 천체인 달에 착륙한 탐사선이다. (1966년)
베네라 3호 - 최초로 금성 표면에 도달한 탐사선. 그러나 금성에 접근하던 중 통신이 두절되어 정보를 얻는 데에는 실패하였다. (1966년)
서베이어 3호 - 지구가 아닌 천체 상에서 인류와 다시 만난 최초이자 유일한 탐사선이다. 아폴로 12호 참고. (1967년)
매리너 5호 - 금성에 접근비행하여 탐사선이 금성 뒤로 지나갈 때의 수신 전파의 강도 변화 측정으로 금성대기압을 계산해냈다. (1967년)
존드 5호 - 최초로 생물을 태우고 달 주위를 비행한 탐사선. 승무원은 거북이 두 마리. (1968년)
매리너 6호, 매리너 7호 - 매리너 4호보다 더 가까이 화성에 접근비행하여 더 많은 양의 표면촬영사진을 보내왔다. (1969년)
1970년대
베네라 7호 - 최초로 금성에 연착륙한 탐사선. (1970년)
루나 16호 - 월석을 가지고 돌아온 최초의 무인 탐사선.[2] (1970년)
매리너 9호 - 화성에 가까이 접근비행만 한-즉 가까이 지나쳐간-전 탐사선들과는 달리 최초로 화성궤도를 돌면서 수천장이 넘는 표면사진을 보내왔다. 이로써 화성표면지도가 만들어졌다. (1971년)
마스 2호 - 화성에 최초로 착륙하려다 추락해 들이받은 탐사선. 결국 착륙한 지 몇 초 뒤 연락이 두절되어서 결국 임무 실패. (1971년)
마스 3호 - 화성에 최초로 착륙한 탐사선. 그러나 착륙후 수초 후 통신 두절. (1971년)
파이오니어 10호 - 최초로 목성 탐사 성공. (1973년)
파이오니어 11호 - 최초로 토성 궤도에 진입했으며 두번째로 목성을 탐사한 탐사선. (1974년)
매리너 10호 - 최초로 수성 탐사에 성공한 탐사선. (1973년)
바이킹 1, 2호 - 화성에 착륙하여 최초의 화성 표면 영상을 촬영했으며, 몇년 동안 화성 표면에 머물면서 화성에 미생물이 있는지 알아내기 위해 실험을 하고 화성 표면에 관련된 탐사 자료들을 보냈다. (1976년)
보이저 1, 2호 - 외행성들인 천왕성과 해왕성 탐사의 레전드. 교과서에 있는 외행성 사진들은 거의 이 탐사선의 작품이다. 현재 인류가 날린 탐사선 중 가장 멀리까지 갔으며 원자력 전지의 미미한 전력으로 아직도 관측자료를 보내고 있다. 그리고 그게 또 과학적으로 새로운 발견을 해내고 있다.
1980년대
지오토 - 역시 ESA에 의해 발사된 혜성탐사선. 1986년 핼리 혜성의 지구 접근에 맞추어 발사되어 프로브가 핼리 혜성의 조성에 대한 정보를 보내왔다. 후에 그릭-쉐렐러프 혜성에 접근하고 13일 뒤인 1992년 7월 23일 송신이 끊어졌다.
갈릴레오(탐사선) - 목성에 대기 관측용 프로브를 투하했는데, 프로브는 두 시간 만에 엄청난 대기압으로 인해 파괴됨. 갈릴레오 호 본체는 4년 정도 목성계 탐사를 수행한 후, 목성 대기권에 돌입하여 산화되었다.
1990년대
마젤란 - 금성 탐사선(1990년)
마스 패스파인더 - 이동식 탐사선 소저너를 탑재. 미션의 대성공으로 체급을 한참 높여서 두 대 더 보냈다.
카시니-하위헌스[3] - 둘 다 토성에 가서 하위헌스는 타이탄에 착륙했고, 카시니는 2017년 9월 15일 마지막 임무인 '그랜드 피날레'로 토성의 대기권에 돌입해서 파괴되었다. 심심하면 뭐 발견했다고 나오는 효율 좋은 탐사선이었다.
화성 기후 궤도선 - 단위 체계의 계산 착오 때문에 착륙 도중 폭발로 임무 실패. 탐사선을 제작한 록히드 마틴에서 야드파운드법으로 표기한 탐사선의 추진력을, NASA의 기술자들이 SI 단위로 착각하여 벌어진 어처구니 없는 실수였다. 이 때문에 미국도 미터법의 도입이 시급하다는 지적이 나왔다.
2000년대
2001 마스 오디세이
스피릿과 오퍼튜니티 - 스피릿, 오퍼튜니티의 수명은 3개월로 예상되었으나 2008년에 4년이 지났음에도 아직 신호를 보내고 있다. 2011년 스피릿은 지난 (화성) 겨울을 마지막으로 연락이 두절되었지만, 오퍼튜니티는 2014년에 착륙10주년을 맞이하여 현재까지도 활동중. 2015년 오퍼튜니티의 플레시메모리에서 잦은 데이터 덮어쓰기로 인한 베드셀이 발견되어 치료중 (치료완료). 그러다가 2019년에 종료하였다.
마스 익스프레스 - ESA와 러시아과학자가 만든 유럽최초의 화성탐사선. 2003년 6월 2일 발사되었다.
로제타(탐사선) - 유럽 우주국 (ESA)에 의해 2004년 3월 2일 발사한 혜성탐사선. 프랑스령 기아나에서 아리안 5G + 로켓을 이용해 발사되었다. 2014년 8월에 67P/추류모프-게라시멘코 혜성에 접근하여 혜성 공전 궤도 진입에 성공, 혜성 탐사선 로제타의 탐사로봇 Philae가 2014년 11월 12일 오전 8시35분(GMT 기준) 혜성 '67P/추류모프-게라시멘코에 착륙할 예정이었고, 오후 3시34분경(GMT 기준) 착륙에 성공하여 인류 최초로 혜성에 착륙한 탐사선이 되었다.
메신저(탐사선) - 매리너 10호의 뒤를 이은 수성 탐사선으로 2004년 8월에 발사되어 2011년 11월에 수성궤도에 진입에 성공했다.
딥 임팩트 - 혜성 충돌로 산화, 다만 원래 목적이 충돌이었다.
가구야(탐사선) - 일본의 달탐사선이다.
하야부사 - 일본의 JAXA에서 소행성 이토카와를 탐사하기 위해 2003년 타네가시마 우주 센터에서 발사한 탐사선. 이토카와가 품은 태고의 태양계의 정보가 담긴 시료를 채취하고, 일본 독자의 우주항공 기술만으로 발사한 탐사선이 자력으로 귀환할수 있는가를 가장 중요한 임무로 삼아 발사되었다. 당초엔 4년의 시간이 걸릴거라 예상했지만 탐사중 발생한 각종 트러블에 의해 예정에서 3년이나 늦은 발사후 7년 뒤인 2010년 6월 지구에 귀환한뒤 시료가 담긴 재진입 캡슐을 호주 남부 우메라 사막에 착륙시키며 본체는 대기권에서 산화했다.
화성 정찰위성
뉴 호라이즌스 - 최초로 왜행성 명왕성에 근접하는 탐사선. 참고로 이걸 쏠 당시에는 아직 행성이었으나, 뉴 호라이즌스 발사 7개월여 후 열린 국제천문연맹 총회에서 명왕성 퇴출이 결정나면서 뉴 호라이즌스는 왜소행성 탐사를 하러 가는 탐사선이 되어 버렸다. 인류가 발사한 탐사선중 가장 빠른 속도로 지구를 빠져나갔다.
피닉스 - 1999년 이후 NASA가 착륙시키는데에 성공한 고정식 탐사선.
2010년대
아카츠키 - 일본의 JAXA의 금성탐사선 이다.
주노 - 카시니의 성공을 본받아 이번엔 목성으로 출발. 2011년 8월 발사. 2016년 7월 도착.
큐리오시티 - 화성 과학 실험실(Mars Science Laboratory, MSL)은 NASA의 네번째 화성탐사로버(MER)로, 큐리어시티 로버라고도 부른다. 2009년 7월에 발사되어 2010년 가을에 도착할 예정이었으나. 발사가 연기되어 2011년 11월 26일 오전 10시 2분(현지시각)에 플로리다 주 케이프커내버럴 공군 기지에서 성공적으로 발사되었고, 궤도 진입에 성공해 약 8개월 동안 우주 공간을 비행한 뒤 2012년 8월 6일 화성 적도 아래 분화구 게일크레이터(Gale Crater)에 착륙했다. 이후 2년 여 동안 화성 표면 탐사 임무를 수행할 예정이다. 2018년 2월 6일 기준 현재까지 잘 활동하고 있지만 바퀴 몇몇에 균열이 발생했다. 하지만 NASA에서는 문제없다고 발표
창어 1, 2, 창어 3호 - 중화인민공화국에서 쏘아올린 달 탐사선. 창어 3호는 지금까지 미국과 소련만이 실시했던 달 착륙을 성공하여 중국을 역사상 3번째로 달 착륙에 성공한 나라로 만들어 주었다.
LADEE(라디, 래디) - 미국의 달 탐사선. 임무는 달의 대기와 먼지 환경 탐사였다. 선대 탐사선의 장비를 물려받아[4] 제작해서 적은돈으로 개발, 발사됐다.(발사년일은 2013년 9월 6일)[5] 참고로 라디가 발사됐을 때 근처에 있던 개구리가 봉변을 당했다고 한다. 이후 달 궤도후 임무를 수행하다가 [6] 연료 부족으로 달 뒤편으로 추락했다. 이후 2014년 11월 1~2일쯤 라디의 무덤이 발견됐다. 위치는 '선드맨 V’ 근처.
MAVEN - 2013년 11월 18에 발사된, 나사의 화성대기연구를 위한 탐사선이다.
OSIRIS-REx - New Frontiers program의 일환으로 세 번째로 발사된 지구접근천체 베누 탐사선
망갈리안 - 2013년 인도에 의해 발사된 화성탐사선. 항목 참조.
엑소마스 가스추적궤도선 - 엑소마스 프로젝트 중 1단계의 탐사선이다.
창어 4호 - 2018년 12월 7일 발사, 12월 12일에 달 궤도에 진입, 2019년 1월 3일 착륙선이 달 뒷면에 착륙하였다. 통신 중계위성 췌차오, 로버 위투 2호가 포함됐다.
인사이트(탐사선) - 화성탐사선.
파커 태양 탐사선 - 2018년 8월 12일 발사한 NASA의 태양연구탐사선. #
베피콜롬보 - 2018년 10월 20일 발사한 ESA x JAXA의 수성탐사선.
베레시트(Beresheet) - 이스라엘의 첫 달 탐사선이자 세계 최초의 민간 달 탐사선이다. 정보 구글 Lunar X-Prize에 도전하였고 달 궤도에 순조롭게 진입했으나 메인 엔진이 고장나면서 착륙에 실패했다.
찬드라얀 2호 - 2019년 7월 22일에 발사된 달 탐사선으로 착륙선, 로버도 같이 보낸다. 착륙선은 실패하였다.# 97억 8000만 루피(약 1670억원)인데 어벤져스: 엔드게임의 제작비 3억 5000만달러(약 4190억원)의 절반도 안 되는 돈으로 만들었다는 점에서 주목받았다.
2020년대
솔라 오비터 - 2020년 2월 9일에 발사된 유럽 우주국과 NASA의 태양 탐사선.
아말 - 2020년 7월 20일 발사한 UAE의 화성 탐사선.
톈원 1호 - 2020년 7월 23일 발사한 중국의 화성 탐사선. 탐사 로버 주룽이 2021년 5월 15일 착륙해 탐사를 시작했다.
퍼서비어런스 - 2020년 7월 30일 발사한 미국(NASA)의 화성 탐사선. 2021년 2월 18일 화성에 착륙하였고 지구 외의 조종 가능한 최초의 동력 비행물체인 인지뉴어티를 같이 실어 보냈다.
창어 5호 - 2020년 11월 24일에 발사되어 12월 1일 달에 착륙해, 월석 등을 채취해 17일 지구로 복귀했다.
루시 - 2021년 10월 16일 발사한 소행성 탐사선. 트로이군 소행성들을 탐사한다. 탐사선으로써 가장 많이 탐사가진다.#
다트(DART·Double Asteroid Redirection Test) - 공식 명칭은 이중 소행성 방향 전환 평가. 쌍성계 소행성 65803 디디모스의 궤도를 조금이라도 바꾸는 것이 목표다. 2021년 11월 24일에 발사되었으며, 2022년 10월에 임무 수행. 태양계 탐사 프로그램 1번째 미션이다.
루나 25호 - 2022년 7월 22일 발사 예정인 러시아의 달 탐사선.
다누리 - 2022년 8월 발사된 대한민국의 달 탐사선
프시케 - 2022년 8월 1일 발사예정인 소행성 탐사선. 프시케에 있는 희귀광물 조사가 이뤄진다.
찬드라얀 3호 - 2022년 3분기 발사 예정으로 달 착륙선 실패에 대한 만회하기 위해 기획한 탐사선.
ASTER - 브라질 우주국 최초의 탐사선으로 2022년 ~ 2025년 6월 발사예정인 소행성 (153591) 2001 SN263을 탐사한다.
SLIM - 2022년 발사예정인 JAXA의 최초 달 착륙선
목성 얼음 위성 탐사선(JUICE, JUpiter ICy moon Explorer) - 2023년 4월 발사 계획인 ESA가 기획하고 있다. 목성의 위성인 가니메데, 칼리스토, 유로파를 탐사한다.
유로파 클리퍼(Europa Clipper) - 2024년 4월 10일 발사예정인 NASA의 탐사선. 유로파에 근접궤도를 형성, 탐사한다. 태양계 탐사 프로그램 2번째 미션이다.
로잘린드 프랭클린 - 2024년 발사 예정인 유럽우주기구의 화성 로버. 이름은 DNA 구조 발견에 공헌한 동명의 이름에서 따왔다.
코멧 인터셉터 - ESA와 JAXA의 혜성 탐사선. 2029년 발사 예정
드래곤플라이 - NASA의 타이탄 착륙선. 2026년 발사 예정. 2034년 도착 예정.
다빈치 - 다빈치는 금성 탐사선으로 Deep atmosphere venus investigation of noble gases, chemistry, and imaging애 앞글자들을 따서 이름을 DAVINCI라고 부른다, 다빈치는 대기를 뚫고 들어가 표면까지 하강할 소형 탐사선으로 구성이 돼있다, 2029년 6월 발사 에정, 2031년 도착 에정.
2030년대
스타샷 - 인류 최초의 성간 탐사선. 솔라 세일과 고출력 레이저를 이용하여 광속의 20%까지 가속한 후 알파 센타우리 항성계로 보내진다. 2036년 발사 예정. 2060년대 도착 예정.
2.2. 유인탐사선[편집]
1960년대
아폴로 7호 - 아폴로 계획에서 최초의 유인우주선 발사. (1968년)
아폴로 8호 - 인류 역사상 최초로 지구 궤도를 벗어나 달 궤도에 갔다 온 미션이다.
아폴로 9호 - 아폴로 계획의 세번째 유인 미션이자 지구 궤도에서의 첫 달착륙선(Lunar Module, LM) 테스트이며, 비록 지구 궤도에서 미션이 진행되었지만 여러 의미로 JFK의 못 다 이룬 꿈을 가능케 했던, 아폴로 계획의 분수령과 같은 중대한 미션이었다. (1969년)
아폴로 10호 - 아폴로 계획의 네번째 유인 우주선 미션으로, 사령선과 달 착륙선의 달 궤도상 테스트를 진행한 임무였다. 아폴로 11호 임무를 위한 최종 리허설의 의미를 지닌 중요한 단계였다. 아폴로 10호는 아폴로 11호의 리허설에 해당하는 미션으로 달착륙 및 달에서의 이륙을 제외한 모든 미션이 수행되었다.
아폴로 11호 - 인류가 최초로 지구 이외의 천체에 발을 디딘 사건이자 아폴로 계획의 9번째 미션. 지금도 인류 과학기술 발전의 대명사이자 냉전시기 우주 개발 경쟁의 기념비적 결과물로 기억된다.
아폴로 12호 - 유인 아폴로 계획의 6번째이자 인류가 두 번째로 달 표면에 내린 프로젝트.
1970년대
아폴로 13호 - 달에 가던 중간에 산소탱크 폭발 등 사고로 달에 착륙하지 못하고 지구로 겨우겨우 귀환한 임무이다. 아폴로 1호와 함께 아폴로 계획에서 실패로 끝난 2개 임무 중 하나이다. (1970년)
아폴로 14호 - 아폴로 13호가 착륙하려다 실패한 곳인 프라 마우로 크레이터 지역에 착륙하여 9시간 22분 31초동안 선외 활동을 시행하였다. 월석을 나르기위해 최초로 손수레를 사용하였다. (1971년)
아폴로 15호 - 신형 우주복을 사용한 첫 임무이고, 로버(rover)라는 이름의 월면차를 사용한 최초의 달 탐험대이며, 3회의 선외활동을 행한 최초의 미션이다. 아폴로 계획에서 9번째로 발사 유인우주선이다.
아폴로 16호 - 다른 아폴로 미션과 마찬가지로 이 임무에서도 약간의 사고가 있었지만, 아폴로 16호는 임무를 완수하고 귀환했다. 달궤도에서 EVA(우주유영)을 행했고, 월면차 속도기록인 시속 18km도 달성했다. (1972년)
아폴로 17호 - 아폴로 17호는 아폴로 계획의 마지막 달 탐사미션이며, 17호 이후로 인류는 지금까지 달에 다시 가지 않았다. 새턴 V 로켓의 유일무이한 야간 발사이다.
2020년대
인간 착륙 시스템 - 2020년대에 시행될 아르테미스 계획에서 사용될 유인 달착륙선. 정식 명칭은 인간 착륙 시스템(human landing systems, HLS)이다.
2.3. 플라이트(Flight)컴퓨터[편집]
대부분의 탐사선에 탑재되는 컴퓨터시스템은 RAD6000, RAD750같은, 태양풍 하전입자나 기타 우주방사선, 그리고, 토성, 명왕성같이 외행성 탐사선의 경우에는 스윙바이를 위해 목성 접근시 뿜어져나오는 막대한 방사선에 대비하여, 엄청 느리지만[7]방사선에 내성을 가지고 특히 CPU나 RAM을 보호 하기위해, 검증된 군사 & 우주용 CPU으로 제작된 컴퓨터 시스템을 사용하는데,[8] 탐사선 시스템의 기본은 전원 버튼이나 셧다운 명령어가 없다.[9]그렇기에 대부분 탐사선은 저장매체로, 플래시 메모리를 사용하며,[10] 플래시 메모리의 절반이상이 운영체제인데 주로 윈드리버 사의 VX Work를 사용한다. 물론 탐사선도 지구쪽으로 통신을 해야돼서 멘터그래픽스 사의 Nucellous RTOS같은 실시간 통신이 가능한 운영체제를 따로 설치해서 궤도 수정이나 메뉴버링 및 INS 프로그램 등은 주로 탐사선의 RAM에 로딩되어 있기에,[11]새로운 탐사 명령어나, 소프트웨어 업데이트 시 시스템을 깨워서 저장매체 내부에 업로드한다. 태양 플레어 폭발같은 힘쎄고 강한태양풍 하전입자들이 태양계 사방으로 맹렬하게 퍼져나갈때 탐사선을 뚫고 지나가서 RAM의 반도체 소자가 열화되어, 손상되면,[12], 탐사선은 행성의 궤도를 찾지못하거나.[13]궤도 진입시 메뉴버링 값이 안맞아서 엔진 이그니션(점화) 타이밍이 너무 빠르거나 혹은 너무 느리거나 심각한 경우 엔진 점화가 안될때(...) 궤도를 이탈하거나 혹은 급강하로 추락해서 파괴되거나, 통신기능의 장애로 영영 우주 미아가 될수도 있다. 급강하 추락파괴의 대표적인 예가 화성 탐사선 비글호.[14]혹은 플래시 메모리 안의 운영체제가 손상된다면...
2.4. 사용된 CPU[편집]
상당수가 군사 & 우주용 CPU를 사용한다.

ATAC RCA1802[15]
MIL-STD 1750A[16]
Intel 80C85[17]
Intel 8085
Intel RCA 8086[18]
Intel 80C186 + 80C188
Intel 80386 + 80387[19]
Intel 80386SX + 80387[20]
Intel 80386EX
Intel i386[21]
Intel 80486[22]
Motorola MC 68000[23]
ESSC-1[24]
DF-224[25]
UTMC 69R000
F-9450[26]
TMS320C25[27]
TMS320C30
TMS320C40
BAE Systems RAD6000
BAE Systems RAD750
BAE Systems RAD5500[28]
BAE Systems RAD5455[29]
MOOG G-Series Steppe Eagle AMD G시리즈
MOOG V-Series AMD Ryzen
SYNOVA Mongoose-V
Singer Asic[30]
SEAKR Athena-3 SBC PowerPC E500
SEAKR Medusa SBC PowerPC E500
SEAKR RCC5 Virtex 5 FX-130T
퀄컴 스냅드래곤 801[31]
3. 나노&마이크로&스몰셋 CPU[편집]

Xiphos
Q7S (자일링스 Zynq 7020 ARM9)
Q8S (자일링스 UltraScale+ Cortex-A53)

Unibap
iX10-100 (마이크로칩 PolarFire FPGA + AMD V1605B[32]
iX5-100 (AMD G시리즈 SOC or 마이크로칩 SmartFusion2 Cortex-M3)
E2160 (AMD G시리즈 2세대 CPU)
E2155 (AMD G시리즈 1세대 CPU)

DDC
SCS750-SBC (IBM 750FX)
SCS 3740 (GR740 LEON4FT 쿼드코어 SOC)

IBEOS
EDGE Computer (엔비디아 TK1)
4. 큐브셋 CPU[편집]

GOM 곰 SPACE
Nanomind A3200 (아트멜 AT32UC3C MCU)

Pumpkin 호박
PPM A1 (텍사스 인스트루먼트 MSP430F1712)
PPM A2 (텍사스 인스트루먼트 MSP430F1611)
PPM A3 (텍사스 인스트루먼트 MSP430F1618)
PPM B1 (실리콘 랩스 C8051F120)
PPM D1 (마이크로칩 PIC24FJ256GA110)
PPM D2 (마이크로칩 PIC33FJ256GP710)
PPM E1 (마이크로칩 PIC24FJ256GB210)

AAC Clyde Space
Kryten-M3 (마이크로칩 Smart Fusion Cortex-M3)
Sirius OBC (마이크로칩 Smart Fusion Cortex-M3)

INNO Flight
CFC-300 (자일링스 Zyng Cortex-A9)
CFC-400 (자일링스 Zyng Ultrascale+)
CFC-500 (자일링스 Kintex 엔비디아 TK-1)

Space Micro
CSP (자일링스 Zyng 7020 듀얼코어 ARM)

Nano Avionics
SATBUS 3C2 (STM32 Cortex-M7)

EnduroSAT
OBC (ARM Cortex-M7)



5. 관련 문서[편집]
우주선
[1] 고요의 바다 서부에 충돌했다.
[2] 유인까지 포함해서 보면 아폴로 11호가 조금 더 빨리 월석을 가지고 돌아오는데 성공했다.
[3] 흔히 불리는 호이겐스와 달리 하위헌스가 제대로 된 네덜란드어 인명이다.
[4] 화성 과학 실험실, 라크로스, 갈리레오
[5] 그래도 제작과 발사비용이 3000억원이다.
[6] 10월 15일(추정) 월식때도 작동했다.
[7] 화성궤도 도착부터 통신시간이 엄청나게 길어진다. 화성 : 20분 명왕성 : 8시간이다(...) 전송시간이 엄청나게 길어서 그 시간동안 순차적으로 처리한 뒤 보내기 때문에 굳이 빠른 연산을 처리할 이유도 없다.
[8] 주로 극한의 환경에 요구되는 안전성을 가진 컴퓨팅 시스템. MIL-STD 인증을 거친다. 이는 전투기나 헬기의 항법 조종 컴퓨터나, 오토 파일럿, 항공기의 INS(initilazed Nevigetion System 관성 항법 시스템), 미사일의 IR Seeker 등등 각종 포착 및 추적 레이더, 그리고 전차의 조종이나 사격통제장비 같은 군사용 컴퓨터와 마찬가지.
[9] 프로그래밍 코드 역시 용량을 차지하기에, 종료 명령 삽입할 공간에 탐사 프로시저 코드 한줄을 더 넣는게 이득이다. 누가 수백억~수천억 달러를 들이면 하나라도 더 우려먹지, 누가 굳이 종료 커맨드를 넣겠는가?
[10] 카시니 하위헌스와 갈릴레오 탐사선은 제외. 두 탐사선은 테이프 드라이브를 저장매체로 쓴다.카시니는 이게 너무 빨라서 태워먹을뻔했다(...)
[11] 그래서 뉴 호라이즌이나 주노같은 탐사선은 행성으로 가는 도중에 전력을 아끼기 위해, 주로 동면 (하이버네이션)을 한다.
[12] 정확히는 RAM안에 로드된 항법프로그램의 코드값이나 메뉴버링 커맨드.
[13] 탐사선이 행성의 위치를 찾는방법은 1.태양의 위치와 황도면으로 찾거나 2. 용골자리 알파성 카노푸스의 위치를 실시간 추적해서 찾는다. 2.의 경우에는 플라이트 컴퓨터에 카노푸스 트래커를 별도로 탑재한다.
[14] 화성 대기권 진입후 시스템 고장으로 낙하산이 자동으로 펴지질 않아서 시속 2,400km의 속도로 화성 지표면에 들이박고 바로 개박살났다(...).
[15] 갈릴레오 목성탐사선에 쓰인 16Bit CPU 메모리는 176KB.
[16] MIL-STD 인증 16Bit non-RISC CPU. 카시니-하위헌스 토성탐사선에 쓰였다. 메모리는 512KB.
[17] 마스 패스파인더의 소저너에 쓰였다. 속도는 120KHz.
[18] 우주왕복선에 쓰였다. 디스플레이 프로세서는 RCA 1802.
[19] 80386 CPU의 부동소수점 연산처리를 하는 보조 프로세서.
[20] 국제우주정거장에 절찬리 사용중이다.
[21] 주로 우주왕복선의 각종 시스템에서 쓰였다.
[22] 허블 우주망원경에서 사용중.
[23] 인공위성뿐만 아니라 PDA 오락실의 아케이드 게임 기판의 CPU나 SPU 사운드칩등에도 널리 사용된다. 클럭속도는 2.5MHz
[24] NASA Standard Spacecraft Computer 즉 나사 표준 탐사선 컴퓨터의 준말.
[25] 486 CPU와 동급속도
[26] 1750A MMU 칩 즉 코프로세서.
[27] DSP 신호처리 칩
[28] 차세대 유인 우주선에 탑재된다. 현재 생산되고 있는 탐사용 프로세서 중 최초의 64bit 프로세서 이자, 몇 안되는 멀티코어 프로세서.
[29] 쿼드코어 프로세서
[30] 우리가 생각하는 그 제봉틀 회사 맞다. 제봉틀 뿐만 아니라 유도탄용& 우주발사체용 ASIC과 항법장치를 생산했다.
[31] 퍼서비어런스의 드론인 인지뉴어티의 메인시스템
[32] 라이젠 기반

댓글목록

등록된 댓글이 없습니다.

회원로그인

회원가입
사이트 내 전체검색
Copyright © CANADAKOREA.CA. All rights reserved.

Contact E-mail : canadakorea@hotmail.com