**Europe/ ** EU MEMBERS > Europe 유롭

본문 바로가기

Europe 유롭

**Europe/ ** EU MEMBERS

페이지 정보

profile_image
작성자 canada
댓글 0건 조회 340회 작성일 22-09-13 21:28

본문

유럽연합
namu.wiki
https://namu.wiki › 유럽연합
2 days ago — 유럽연합은 유럽의 정치 경제 통합을 실현하기 위하여 1993년 11월 1일 발효된 마스트리흐트 조약에 따라 유럽 12개국이 참가하여 출범한 연합 기구 ...
대외관계: 유럽연합-러시아 관계 · 유럽연합-우...
조약 및 협정: 솅겐 조약 · 로마 조약 · 마스트리흐...
‎확장 · ‎유럽연합/비판 및 문제점 · ‎브렉시트 · ‎가상
---------------------------------------------------------------
https://ko.wikipedia.org/wiki/%EC%9C%A0%EB%9F%BD_%EC%97%B0%ED%95%A9_%ED%9A%8C%EC%9B%90%EA%B5%AD
https://ko.wikipedia.org/wiki/%EC%9C%A0%EB%9F%BD%EC%97%B0%ED%95%A9
--------------------------------------------------------------
====================================
What is the 44 country in Europe?
https://www.google.ca/search?q=europe&sxsrf=ALiCzsZE2quc_smFVP8wXTsrRznNmQ9l7g%3A1663071381196&source=hp&ei=lXQgY9DPCe680PEPtZ21kAQ&iflsig=AJiK0e8AAAAAYyCCpbA0uO3A7XFLUaoJwo5uYKFrV1QH&ved=0ahUKEwiQ7qPX35H6AhVuHjQIHbVODUIQ4dUDCAk&uact=5&oq=europe&gs_lcp=Cgdnd3Mtd2l6EAMyCwgAEIAEELEDEIMBMg4ILhCABBCxAxCDARDUAjIOCC4QgAQQsQMQgwEQ1AIyEQguEIAEELEDEIMBEMcBENEDMgsILhCABBCxAxCDATIFCAAQgAQyCwgAEIAEELEDEIMBMggIABCxAxCDATIOCC4QgAQQsQMQgwEQ1AIyBQgAEIAEOgcIIxDqAhAnOg0ILhDHARCvARDqAhAnOgcILhDqAhAnOgQIIxAnOggILhCxAxCDAToICAAQgAQQsQM6EAgAEIAEELEDEIMBEEYQggJQqA5YuB5gwyJoAHAAeACAAa0HiAH5IJIBAzYtNZgBAKABAbABCg&sclient=gws-wiz
-------------------------------------------------------------------------------
EU MEMBERS
What are the 24 European countries?
Image result for europe
Which Countries Belong to the EU? The EU countries are: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain and Sweden.


---------------------------

Europe is a landmass, which is either considered a continent in its own right or a subcontinent of Eurasia, located entirely in the Northern Hemisphere and mostly in the Eastern Hemisphere. Comprising the westernmost peninsulas of Eurasia, it shares the continental landmass of Afro-Eurasia with both Asia and Africa. Wikipedia
Area: 10.53 million km²
Population: 746.4 million (2018)
GDP per capita: $34,230 (2022 est; 3rd)
Dependencies: External (5–6); Internal (2–3)
UN M49 code: – Europe; – World
------------------------------------
Europe - Wikipediahttps://e

-------------------------------------------------
Countries in Europe:
44
There are 44 countries in Europe today, according to the United Nations. The full list is shown in the table below, with current population and subregion (based on the United Nations official statistics).

Not included in this total of "countries" and listed separately are:

Dependencies (or dependent territories, dependent areas) or Areas of Special Sovereignty (autonomous territories)
Search:
# Country Population
(2020) Subregion
1 Hungary 9,660,351 Eastern Europe
2 Belarus 9,449,323 Eastern Europe
3 Austria 9,006,398 Western Europe
4 Serbia 8,737,371 Southern Europe
5 Switzerland 8,654,622 Western Europe
6 Germany 83,783,942 Western Europe
7 Holy See 801 Southern Europe
8 Andorra 77,265 Southern Europe
9 Bulgaria 6,948,445 Eastern Europe
10 United Kingdom 67,886,011 Northern Europe
11 France 65,273,511 Western Europe
12 Montenegro 628,066 Southern Europe
13 Luxembourg 625,978 Western Europe
14 Italy 60,461,826 Southern Europe
15 Denmark 5,792,202 Northern Europe
16 Finland 5,540,720 Northern Europe
17 Slovakia 5,459,642 Eastern Europe
18 Norway 5,421,241 Northern Europe
19 Ireland 4,937,786 Northern Europe
20 Spain 46,754,778 Southern Europe
21 Malta 441,543 Southern Europe
22 Ukraine 43,733,762 Eastern Europe
23 Croatia 4,105,267 Southern Europe
24 Moldova 4,033,963 Eastern Europe
25 Monaco 39,242 Western Europe
26 Liechtenstein 38,128 Western Europe
27 Poland 37,846,611 Eastern Europe
28 Iceland 341,243 Northern Europe
29 San Marino 33,931 Southern Europe
30 Bosnia and Herzegovina 3,280,819 Southern Europe
31 Albania 2,877,797 Southern Europe
32 Lithuania 2,722,289 Northern Europe
33 North Macedonia 2,083,374 Southern Europe
34 Slovenia 2,078,938 Southern Europe
35 Romania 19,237,691 Eastern Europe
36 Latvia 1,886,198 Northern Europe
37 Netherlands 17,134,872 Western Europe
38 Russia 145,934,462 Eastern Europe
39 Estonia 1,326,535 Northern Europe
40 Belgium 11,589,623 Western Europe
41 Czech Republic (Czechia) 10,708,981 Eastern Europe
42 Greece 10,423,054 Southern Europe
43 Portugal 10,196,709 Southern Europe
44 Sweden 10,099,265 Northern Europe
Dependencies or other territories


------------------------------------------------------
Britanica

Europe, second smallest of the world’s continents, composed of the westward-projecting peninsulas of Eurasia (the great landmass that it shares with Asia) and occupying nearly one-fifteenth of the world’s total land area. It is bordered on the north by the Arctic Ocean, on the west by the Atlantic Ocean, and on the south (west to east) by the Mediterranean Sea, the Black Sea, the Kuma-Manych Depression, and the Caspian Sea. The continent’s eastern boundary (north to south) runs along the Ural Mountains and then roughly southwest along the Emba (Zhem) River, terminating at the northern Caspian coast.


Europe’s largest islands and archipelagoes include Novaya Zemlya, Franz Josef Land, Svalbard, Iceland, the Faroe Islands, the British Isles, the Balearic Islands, Corsica, Sardinia, Sicily, Malta, Crete, and Cyprus. Its major peninsulas include Jutland and the Scandinavian, Iberian, Italian, and Balkan peninsulas. Indented by numerous bays, fjords, and seas, continental Europe’s highly irregular coastline is about 24,000 miles (38,000 km) long.

Among the continents, Europe is an anomaly. Larger only than Australia, it is a small appendage of Eurasia. Yet the peninsular and insular western extremity of the continent, thrusting toward the North Atlantic Ocean, provides—thanks to its latitude and its physical geography—a relatively genial human habitat, and the long processes of human history came to mark off the region as the home of a distinctive civilization. In spite of its internal diversity, Europe has thus functioned, from the time it first emerged in the human consciousness, as a world apart, concentrating—to borrow a phrase from Christopher Marlowe—“infinite riches in a little room.”

Athens: Acropolis
Athens: Acropolis
As a conceptual construct, Europa, as the more learned of the ancient Greeks first conceived it, stood in sharp contrast to both Asia and Libya, the name then applied to the known northern part of Africa. Literally, Europa is now thought to have meant “Mainland,” rather than the earlier interpretation, “Sunset.” It appears to have suggested itself to the Greeks, in their maritime world, as an appropriate designation for the extensive northerly lands that lay beyond, lands with characteristics vaguely known yet clearly different from those inherent in the concepts of Asia and Libya—both of which, relatively prosperous and civilized, were associated closely with the culture of the Greeks and their predecessors. From the Greek perspective then, Europa was culturally backward and scantily settled. It was a barbarian world—that is, a non-Greek one, with its inhabitants making “bar-bar” noises in unintelligible tongues. Traders and travelers also reported that the Europe beyond Greece possessed distinctive physical units, with mountain systems and lowland river basins much larger than those familiar to inhabitants of the Mediterranean region. It was clear as well that a succession of climates, markedly different from those of the Mediterranean borderlands, were to be experienced as Europe was penetrated from the south. The spacious eastern steppes and, to the west and north, primeval forests as yet only marginally touched by human occupancy further underlined environmental contrasts.

A train arriving at Notting Hill Gate at the London Underground, London, England. Subway train platform, London Tube, Metro, London Subway, public transportation, railway, railroad.
BRITANNICA QUIZ
Passport to Europe: Fact or Fiction?
You may know that many famous explorers came from Europe, but is the airport in Genoa, Italy, named for Christopher Columbus? Sort out the facts in this journey through Europe.
Pont du Gard, Nîmes, France
Pont du Gard, Nîmes, France
The empire of ancient Rome, at its greatest extent in the 2nd century CE, revealed, and imprinted its culture on, much of the face of the continent. Trade relations beyond its frontiers also drew the remoter regions into its sphere. Yet it was not until the 19th and 20th centuries that modern science was able to draw with some precision the geologic and geographic lineaments of the European continent, the peoples of which had meanwhile achieved domination over—and set in motion vast countervailing movements among—the inhabitants of much of the rest of the globe (see Western colonialism).

La Palma, Canary Islands, Spain
La Palma, Canary Islands, Spain
As to the territorial limits of Europe, they may seem relatively clear on its seaward flanks, but many island groups far to the north and west—Svalbard, the Faroes, Iceland, and the Madeira and Canary islands—are considered European, while Greenland (though tied politically to Denmark) is conventionally allocated to North America. Furthermore, the Mediterranean coastlands of North Africa and southwestern Asia also exhibit some European physical and cultural affinities. Turkey and Cyprus in particular, while geologically Asian, possess elements of European culture and may be regarded as parts of Europe. Indeed, Turkey has sought membership in the European Union (EU), and the Republic of Cyprus joined the organization in 2004.

Get a Britannica Premium subscription and gain access to exclusive content.
Subscribe Now
Europe’s boundaries have been especially uncertain, and hence much debated, on the east, where the continent merges, without sundering physical boundaries, with parts of western Asia. The eastward limits now adopted by most geographers exclude the Caucasus region and encompass a small portion of Kazakhstan, where the European boundary formed by the northern Caspian coast is connected to that of the Urals by Kazakhstan’s Emba River and Mughalzhar (Mugodzhar) Hills, themselves a southern extension of the Urals. Among the alternative boundaries proposed by geographers that have gained wide acceptance is a scheme that sees the crest of the Greater Caucasus range as the dividing line between Europe and Asia, placing Ciscaucasia, the northern part of the Caucasus region, in Europe and Transcaucasia, the southern part, in Asia. Another widely endorsed scheme puts the western portion of the Caucasus region in Europe and the eastern part—that is, the bulk of Azerbaijan and small portions of Armenia, Georgia, and Russia’s Caspian Sea coast—in Asia. Still another scheme with many adherents locates the continental boundary along the Aras River and the Turkish border, thereby putting Armenia, Azerbaijan, and Georgia in Europe.

Europe’s eastern boundary, however, is not a cultural, political, or economic discontinuity on the land comparable, for example, to the insulating significance of the Himalayas, which clearly mark a northern limit to South Asian civilization. Inhabited plains, with only the minor interruption of the worn-down Urals, extend from central Europe to the Yenisey River in central Siberia. Slavic-based civilization dominates much of the territory occupied by the former Soviet Union from the Baltic and Black seas to the Pacific Ocean. That civilization is distinguished from the rest of Europe by legacies of a medieval Mongol-Tatar domination that precluded the sharing of many of the innovations and developments of European “Western civilization”; it became further distinctive during the relative isolation of the Soviet period. In partitioning the globe into meaningful large geographic units, therefore, most modern geographers treated the former Soviet Union as a distinct territorial entity, comparable to a continent, that was somewhat separate from Europe to the west and from Asia to the south and east; that distinction has been maintained for Russia, which constituted three-fourths of the Soviet Union.

Europe occupies some 4 million square miles (10 million square km) within the conventional borders assigned to it. That broad territory reveals no simple unity of geologic structure, landform, relief, or climate. Rocks of all geologic periods are exposed, and the operation of geologic forces during an immense succession of eras has contributed to the molding of the landscapes of mountain, plateau, and lowland and has bequeathed a variety of mineral reserves. Glaciation too has left its mark over wide areas, and the processes of erosion and deposition have created a highly variegated and compartmentalized countryside. Climatically, Europe benefits by having only a small proportion of its surface either too cold or too hot and dry for effective settlement and use. Regional climatic contrasts nevertheless exist: oceanic, Mediterranean, and continental types occur widely, as do gradations from one to the other. Associated vegetation and soil forms also show continual variety, but only portions of the dominant woodland that clothed most of the continent when humans first appeared now remain.

European Parliament
European Parliament
All in all, Europe enjoys a considerable and long-exploited resource base of soil, forest, sea, and minerals (notably coal), but its people are increasingly its principal resource. The continent, excluding Russia, contains less than one-tenth of the total population of the world, but in general its people are well educated and highly skilled. Europe also supports high densities of population, concentrated in urban-industrial regions. A growing percentage of people in urban areas are employed in a wide range of service activities, which have come to dominate the economies of most countries. Nonetheless, in manufacturing and agriculture Europe still occupies an eminent, if no longer necessarily predominant, position. The creation of the European Economic Community in 1957 and the EU in 1993 greatly enhanced economic cooperation between many of the continent’s countries. Europe’s continuing economic achievements are evidenced by its high standard of living and its successes in science, technology, and the arts.

This article treats the physical and human geography of Europe. For discussion of individual countries of the continent, see specific articles by name—e.g., Italy, Poland, and United Kingdom. For discussion of major cities of the continent, see specific articles by name—e.g., Rome, Warsaw, and London. The principal articles discussing the historical and cultural development of the continent include history of Europe; European exploration; Western colonialism; Aegean civilizations; ancient Greek civilization; ancient Rome; Byzantine Empire; and Holy Roman Empire. Related topics are discussed in such articles as those on religion (e.g., Judaism and Roman Catholicism) and literature (e.g., Greek literature; Dutch literature; and Spanish literature).

W. Gordon East
Thomas M. Poulsen
William H. Berentsen
Geologic history
geologic time
geologic time
The geologic record of the continent of Europe is a classic example of how a continent has grown through time. The Precambrian rocks in Europe range in age from about 3.8 billion to 541 million years. They are succeeded by rocks of the Paleozoic Era, which continued to about 252 million years ago; of the Mesozoic Era, which lasted until about 66 million years ago; and of the Cenozoic Era (i.e., the past 66 million years). The present shape of Europe did not finally emerge until about 5 million years ago. The types of rocks, tectonic landforms, and sedimentary basins that developed throughout the geologic history of Europe strongly influence human activities today.

structural features of Europe
structural features of Europe
The largest area of oldest rocks in the continent is the Baltic Shield, which has been eroded down to a low relief. The youngest rocks occur in the Alpine system, which still survives as high mountains. Between those belts are basins of sedimentary rocks that form rolling hills, as in the Paris Basin and southeastern England, or extensive plains, as in the Russian Platform. The North Sea is a submarine sedimentary basin on the shallow-water continental margin of the Atlantic Ocean. Iceland is a unique occurrence in Europe: it is a volcanic island situated on the Mid-Atlantic Ridge within the still-opening Atlantic Ocean.

General considerations
Tectonic framework
Precambrian rocks occur in three basic tectonic environments. The first is in shields, like the Baltic Shield, which are large areas of stable Precambrian rocks usually surrounded by later orogenic (mountain-forming) belts. The second is as basement to younger coverings of Phanerozoic sediments (i.e., deposits that have been laid down since the beginning of the Paleozoic). For example, the sediments of the Russian Platform are underlain by Precambrian basement, which extends from the Baltic Shield to the Ural Mountains, and Precambrian rocks underlie the Phanerozoic sediments in southeastern England. The Ukrainian Massif is an uplifted block of Precambrian basement that rises above the surrounding plain of younger sediments. The third environment occurs as relicts (residual landforms) in younger orogenic belts. For example, there are Precambrian rocks in the Bohemian Massif that are 1 billion years old and rocks in the Channel Islands in the English Channel that are 1.6 billion years old, both of which are remnants from the Middle Proterozoic Era within the late Paleozoic Hercynian belt. In the Hercynian belt in Bavaria, detrital zircons have been dated to 3.84 billion years ago, but the source of those rocks is not known.

Paleozoic sedimentary rocks occur either in sedimentary basins like the Russian Platform—which has never been affected by any periods of mountain formation and thus has sediments that are still flat-lying and fossiliferous—or within orogenic belts such as the Caledonian and Hercynian, where they commonly have been deformed by folding and thrusting, partly recrystallized, and subjected to intrusion by granites. Mesozoic-Cenozoic sediments occur either in a well-preserved state in sedimentary basins unaffected by orogenesis, as within the Russian Platform and under the North Sea, or in a highly deformed and metamorphosed state, as in the Alpine system.

Chronological summary
The geologic development of Europe may be summarized as follows. Archean rocks (those more than 2.5 billion years old) are the oldest of the Precambrian and crop out in the northern Baltic Shield, Ukraine, and northwestern Scotland. Two major Proterozoic (i.e., from about 2.5 billion to 541 million years ago) orogenic belts extend across the central and southern Baltic Shield. Thus, the shield has a composite origin, containing remnants of several Precambrian orogenic belts.

Early Permian and Late Permian paleogeography and plaeoceanography
Early Permian and Late Permian paleogeography and plaeoceanography
About 540 to 500 million years ago a series of new oceans opened, and their eventual closure gave rise to the Caledonian, Hercynian, and Uralian orogenic belts. There is considerable evidence suggesting that those belts developed by plate-tectonic processes, and they each have a history that lasted hundreds of millions of years. Formation of the belts gave rise to the supercontinent of Pangea; its fragmentation, beginning about 200 million years ago, gave rise to a new ocean, the Tethys Sea. Closure of that ocean about 50 million years ago, by subduction and plate-tectonic processes, led to the Alpine orogeny—e.g., the formation of the Alpine orogenic system, which extends from the Atlantic Ocean to Turkey and contains many separate orogenic belts (which remain as mountain chains), including the Pyrenees, the Baetic Cordillera, the Atlas Mountains, the Swiss-Austrian Alps, the Apennine Range, the Carpathian Mountains, the Dinaric Alps, and the Taurus and Pontic mountains. During the time that the Tethys was opening (about 180 million years ago), the Atlantic Ocean also began to open.

Earth's principal tectonic plates
Earth's principal tectonic plates
The Atlantic is still opening along the Mid-Atlantic Ridge under the ocean, with Iceland constituting an area of the ridge that is raised above sea level. The youngest tectonic activity in Europe is represented by the present-day volcanic eruptions in Iceland; by volcanoes such as Etna and Vesuvius; and by earthquakes, as in the Aegean region and in the Alpine system, which result from current stresses between the Eurasian and African plates.

Stratigraphy and structure
Precambrian
Compared with most of the other continents, Europe has few exposed rocks from Precambrian time (subdivided into the older Archean and the younger Proterozoic eons). Some granitic gneisses, which are more than 3 billion years old, crop out in the northern Baltic Shield, the Ukrainian Massif, and northwestern Scotland. Those rocks were recrystallized at a depth of about 12 miles (20 km) in the Archean crust, but their tectonic environment is poorly understood. The Baltic Shield exhibits successively younger orogenic belts toward the south, from the Archean relicts in the north to the Late Proterozoic Sveconorwegian belt in southwestern Norway. A major orogenic belt in the north, the Svecofennian, developed in the Early Proterozoic Era (2.5 to 1.6 billion years ago); it now occupies the bulk of the Baltic Shield, especially in Finland and Sweden, where it extends from the Kola Peninsula to the Gulf of Finland near Helsinki. The younger Sveconorwegian is a north–south-trending orogenic belt that developed between 1.2 billion and 850 million years ago. It occupies southern Norway and the adjacent area of southwestern Sweden between Oslo (Norway) and Gothenburg (Sweden). On its northern side it has been reactivated almost beyond recognition within the Paleozoic Caledonian orogenic belt. The Ukrainian Massif and the small Laxfordian belt in northwestern Scotland consist mainly of granitic rocks and highly deformed and metamorphosed schists and gneisses that originally were sediments and volcanics; their age is similar to that of the Svecofennian belt. In northwestern Scotland there also is a north–south-trending belt of Proterozoic reddish brown sandstones and conglomerates that is about 1 billion years old; those sediments may be the erosional products or molasse of a 1.2-billion-year-old orogenic belt, of which there are a few relicts within the Caledonian belt of Scotland. The Bohemian Massif is a diamond-shaped block in the heart of Europe, which has been heavily affected by the late Paleozoic Hercynian orogeny.

Many of the rocks formed in the Late Archean (about 2.7 billion years ago) or Early Proterozoic (Svecofennian times) or even later in the Proterozoic (about 1 billion years ago) were strongly deformed in several Precambrian orogenies and thus are now schists, gneisses, and amphibolites, accompanied by a variety of granites. Near the end of the Precambrian—about 800 to 541 million years ago—there was widespread deposition of conglomerates, sandstones, clays, and some volcanic sediments, which make up the Eocambrian (or Vendian) group; those were derived from the erosion of uplifted Precambrian mountains. They are well known for two features. First are their glacial sediments, which were deposited at a time of worldwide glaciation; they occur in northwestern Scotland (Islay Island), western Ireland, Norway (Finnmark and West Spitzbergen), Sweden, France (Normandy), and the Czech Republic (Bohemian Massif). Second is the occurrence of impressions of soft-bodied organisms, such as seaweed, jellyfish, and worms, which represent the beginnings of metazoan (many-celled) life before the explosion of life-forms with hard parts for skeletons that became abundant in the early Cambrian Period. Those impressions occur in Charnwood Forest in central England, southern Wales, northern Sweden, Ukraine, and several localities in the Russian Platform. The Precambrian rocks of Europe provide a rich source of economic minerals that sustain human activities, such as major deposits of iron ore at Kiruna in northern Sweden and Kryvyy Rih in Ukraine; tin deposits associated with granites in Finland; extensive copper–nickel sulfide ores across Finland, especially at Outokumpu, and in Sweden; and magnetite ores containing vanadium and titanium in northern Finland.

Paleozoic Era
The Paleozoic (i.e., from about 541 to 252 million years ago) tectonic geology of Europe can be divided into two parts: the major orogenic belts of the Caledonian (or Caledonides), the Hercynian (or Hercynides), and the Uralian (or Uralides); and the undisturbed, mostly subsurface (and thus poorly known) Paleozoic sediments in the triangular area between the belts in the Russian Platform.

Caledonian orogenic belt
Snowdonia National Park, Wales
Snowdonia National Park, Wales
The major factor that controlled the early mid-Paleozoic development of Europe was the opening and closing of the Iapetus Ocean, which gave rise to the Caledonian orogenic belt that extends from Ireland and Wales through northern England and Scotland to western Norway and northward to Finnmark in northern Norway. The belt is confined between the stable blocks of the Baltic Shield and the Precambrian belt of northwestern Scotland. Remnants of the Iapetus seafloor are seen in ophiolites (slices of the seafloor that were thrust upward by the action of plate tectonics) at Ballantrae in the Strathclyde region of Scotland and near Bergen in Norway. During the Cambrian Period (about 541 to 485 million years ago), widening of the Iapetus gave rise to extensive shelf seas on the bordering continents, which deposited a thin cover of limestone and shale with a remarkable diversity of fossils of numerous marine invertebrates. The existence of that sea can be demonstrated by the presence of trilobite and graptolite fossils in northern Scotland, which was on one side of the sea, that are significantly different from those in central England and southern Norway, which were on the other side. In the Ordovician Period (about 485 to 444 million years ago) the sea began to close by subduction, giving rise to major magmatic belts with lavas and tuffs in the Lake District of northern England and in Snowdonia National Park in northern Wales—where there is associated gold and copper mineralization—and to many granites in the Highlands of Scotland.

In the Silurian Period (about 444 to 419 million years ago) the Iapetus Ocean closed, with the result that the bordering continental blocks collided, giving rise to deformation, metamorphism, and the orogeny of the Caledonian belt. In the late Silurian, early land plants and the first freshwater fish appeared in lakes on the belt. The rifts of the Orkney Basin developed in the Devonian Period (about 419 to 359 million years ago) on top of the thickened and unstable crust of the Caledonian orogenic belt in a manner comparable to the Quaternary rifts of Tibet (i.e., those that have appeared in the past 2.6 million years), which have a crust thickened by the Himalayan orogeny of the Paleogene and Neogene periods (about 66 to 2.6 million years ago). Erosion of the uplifted mountain belt in the Devonian led to deposition of sandstones and conglomerates in basins over a wide region from the British Isles to the western Russian Platform, often called the Old Red Sandstone continent.

Hercynian orogenic belt
The Hercynian, or Variscan, orogenic belt evolved during the Devonian and Carboniferous periods, from about 419 to 299 million years ago. The belt extends from Portugal and western Spain, southwestern Ireland, and southwestern England in the west through the Ardennes, France (Brittany, Massif Central, Vosges, and Corsica), Sardinia, and Germany (Odenwald, Black Forest, and Harz Mountains) to the Czech Republic (Bohemian Massif). The orogeny was formed by plate-tectonic processes that included seafloor spreading, continental drift, and the collision of plates. Remnants of the original ocean floor are preserved as ophiolites in the Harz mountain range in Germany and in the Lizard Peninsula of southwestern England. In the Devonian Period a continental margin ran along the north side of the belt in Devon and Cornwall (England) on which extensive sandstones derived from the continent were deposited. In the Carboniferous Period shallow-water limestones were laid down in the area of the Pennines of England on a shelf or carbonate bank; that formation passes southward into deeper-water shales of the Culm Trench of southwestern England, within which are found the pillow lavas (aggregates of ovoid masses, resembling pillows), gabbros, and serpentinites of the Lizard ophiolite. In Brittany there is an island arc with lavas and granites that resulted from subduction of the ocean floor. The main Hercynian suture zone of the collided plates extends from the south side of Brittany to the Massif Central.

Throughout much of Europe there is evidence of extensive thrusting, implying that there was appreciable thickening of the continental crust and the formation of a Tibetan-style plateau across the Hercynian orogeny. The thickening led to melting of the lower crust and the formation of large numbers of late Carboniferous granites, especially in the Massif Central. The plateau became overly thick and unstable, and that caused the formation of rifts that developed into coal-bearing basins—as in Silesia (Poland) and the Massif Central—in the late Carboniferous and Permian periods (i.e., between about 299 and 252 million years ago).

Indeed, the varied tectonic development of the Hercynian orogeny gave rise to widespread mineral deposits in many environments, which have been exploited in the economic development of many countries. Lead and zinc deposits occur in shelf carbonate sediments in Ireland and the Pennines of England; there are deposits of copper, lead, and zinc sulfides that formed in rifts in Silesia (Poland and eastern Germany) and at the Riotinto Mines in southwestern Spain; and important mineral deposits of tin, tungsten, and uranium are associated with crustal melt granites in Cornwall, the Massif Central, and Spain and Portugal.

Uralian orogenic belt
The Uralian orogenic belt, which forms the traditional eastern boundary of Europe, extends for about 2,175 miles (3,500 km) from the Aral Sea in the south to the northeasternmost tip of Severny Island, one of the two large islands that constitute most of the Novaya Zemlya archipelago in the Arctic Ocean. It encompasses the Mughalzhar (Mugodzhar) Hills north of the Aral Sea, the Ural Mountains proper (which stretch for some 1,550 miles [2,500 km] from the bend of the Ural River in the south to the fringe of the Arctic in the north), the northern fingerlike extension of the Pay-Khoy Ridge, and Novaya Zemlya. The belt developed late in the Paleozoic as a result of collision between Asia and Europe. The earliest rifts in old Precambrian basement rocks began about 500 million years ago, and those developed into the floor of a new ocean. Island arcs formed in the later Silurian Period, and countless ophiolitic slabs of ocean floor were thrust onto the continental margins. In Devonian times a considerable amount of thrusting and metamorphism occurred, and the final parts of the ocean floor were subducted; the result of that activity was that in the Permian Period there was a final collision between the continents of Europe and Asia that gave rise to the Uralian orogenic belt.

European Union. Design specifications on the symbol for the euro.
BRITANNICA QUIZ
Exploring Europe: Fact or Fiction?
Is Andorra the world’s only coprincipality? Is Ireland’s largest church located in Dublin? Sort out the facts in thiz quiz of European cities, countries, and culture.
Ural Mountains
Ural Mountains
In the Permian Period there was widespread deposition of limestones followed by red sandstones, which were derived by erosion of the mountains. The Ural Mountains also are rich in mineral deposits—especially chromite, platinum, nickel, copper, and gold—which are associated with the major ophiolitic slabs of ocean floor distributed along the chain.

Mesozoic and Cenozoic eras
Bihor Massif
Bihor Massif
During the Mesozoic Era the Tethys Sea evolved in what is now southern Europe, and during the Cenozoic Era that ocean was destroyed by subduction as many small plates collided. Those events gave rise to the present-day tectonic mosaic that extends eastward from the Atlas Mountains of North Africa, the Baetic Cordillera of southern Spain, and the Pyrenees via the Alps of maritime France, Switzerland, and Austria to the Carpathians, the Apennines, the Dinaric Alps, the Balkan Mountains, and the Taurus and Pontic mountains of Turkey and finally to the Caucasus. Within those belts also must be included the Pannonian Basin of southeastern Europe and the Algerian (or Balearic), Alborán, Tyrrhenian, and Adriatic basins of the Mediterranean Sea. The main cause of the Alpine orogeny during the Cenozoic was the northward compression of Africa into Europe.

The first rifting of the older supercontinent, Pangea, began in the Triassic Period (i.e., about 252 to 201 million years ago). During that time salt and evaporites were deposited in lakes in rift valleys. By 220 million years ago, in the Late Triassic, the continental margins of the new, narrow Tethys Sea were commonly covered by shallow water over fossiliferous carbonate shelf sediments. During the Jurassic Period (about 201 to 145 million years ago) those carbonate shelves began to fragment, and in the Cretaceous Period (about 145 to 66 million years ago) the ocean floor was subducted in many places. That gave rise to volcanic island arcs, such as those of present-day Indonesia, and slabs of the Tethys ocean floor were thrust as ophiolites onto the continental margins. Extensive remnants of those ophiolites can be seen today, especially in the northern Apennines and in the Balkans, Greece, Turkey, and Cyprus.

Pyrenees
Pyrenees
Collisions between many of the continental microplates took place in the Eocene and Oligocene epochs (about 56 to 23 million years ago). For example, the Iberian Peninsula rotated to give rise to the Pyrenees, the Italian Peninsula drove northward and compressed into Europe, causing the growth of the Swiss-Austrian Alps, and Anatolia moved westward and gave rise to the Aegean arc and the mountains of Greece. It is interesting to consider that it was the opening of the Red Sea that caused the Arabian Peninsula to slide northward along the fault defined by the Dead Sea and the Jordan Valley and in so doing to form at its front the Zagros Mountains of Iran, which in turn pushed Anatolia westward and caused the deformation in Greece. That scenario illustrates the interlinking and interdependence of all of those movements and structures in Europe with those outside the continent.

In the Miocene Epoch (i.e., about 23 to 5.3 million years ago) many of the early Mediterranean basins (e.g., Balearic, Tyrrhenian, Ionian, and Levantine) became isolated from the main Atlantic and Indo-Pacific oceans. In those basins were laid down huge deposits of salt and gypsum in evaporites up to more than a mile thick. Several other important mineral deposits in the European Alpine system also can be related to the stages of geologic evolution described above. Lead and zinc deposits occur in Triassic shelf limestones at Blei Hill in western Germany. Chromite ores are found in the ophiolites of the Balkans, Greece, and Turkey. Copper ores formed in pillow-bearing basaltic lavas of the Tethyan ocean floor; copper mines have been worked since antiquity in Cyprus, which lent its name to the element. The Tethys, however, was a relatively narrow ocean, and thus its limited subduction was not able to give rise, for example, to many granites and volcanic rocks, which might have contained useful mineral deposits.

Active seismic disturbances expressed as earthquakes are a reflection of the continuing compression between several of the European microplates. They are common in the Atlas Mountains, the island arc of the south Aegean, Greece, the island arc of the Tyrrhenian Sea in southern Italy, Turkey, and the Caucasus Mountains.

North European and Russian platforms
The approximately triangular area between the Caledonian orogeny in the west, the Hercynian orogeny and the Alps in the south, and the Urals in the east includes the Russian and North European platforms, as well as the North Sea. (That sea is a subsided fragment of the continental margin of Europe that was flooded with water from the melted glaciers of the last ice age.) Within that area the sedimentary rocks formed since the beginning of the Paleozoic are either undeformed or only weakly deformed, and thus that area contrasts with the surrounding orogenic belts described above, where such sediments are strongly deformed. Therefore, throughout much of the extensive Russian Platform the Paleozoic, Mesozoic, and Cenozoic sediments have escaped the effects of the surrounding orogenies, and they are almost as horizontal as when they were laid down. Farther west, in the portion of the North European Platform that includes southeastern England and northern France, Mesozoic and early Cenozoic sediments have been weakly deformed into anticlines (arches of stratified rock) and synclines (troughs of stratified rock) by the Cenozoic deformation of the Alpine orogenic belt to the south. The deformation took place at a shallow level of the crust, and the sediments are still unmetamorphosed. For those reasons, the best place to find beautifully preserved Phanerozoic fossils is in the central triangular area of Europe. Moreover, under the North Sea there are gas reserves in Permian and Triassic sediments, and there are major oil reservoirs in Jurassic sediments.

Cenozoic igneous provinces
Northern Ireland: Giant's Causeway
Northern Ireland: Giant's Causeway
From about 60 to 50 million years ago there were important igneous extrusions and intrusions in northwestern Britain. In Northern Ireland and northwestern Scotland, basaltic lava flows (e.g., in the Giant’s Causeway and the northern part of the isle of Skye) are associated with northwest–southeast-trending basaltic dikes and many plutonic (igneous rock formed deep within the crust) complexes, which are probably the roots of volcanoes. The dikes extend southeastward across northern England and continue under the North Sea. Related lavas occur in the Faroe Islands. Those igneous rocks formed in the faulted and thinned continental margin of northwestern Europe contemporaneously with the rifting and seafloor spreading that gave rise to the Atlantic Ocean.

Iceland
Iceland: geyser
Iceland: geyser
The Mid-Atlantic Ridge plate boundary, separating the North American and the Eurasian plates, extends through the centre of Iceland. Along that ridge the Atlantic Ocean is still growing, and on Iceland that activity is expressed as major rifts, volcanoes, and steam geysers. The entire island is made of lavas, the oldest of which, on the northwestern coast, came from eruptions about 16 million years ago. Iceland thus preserves a unique record of the last stages of development of one of the world’s major accreting plate boundaries, most of which is elsewhere submarine.

Brian Frederick Windley
Pleistocene glaciation
European ice sheets
European ice sheets
The Pleistocene Epoch occupies the Quaternary Period (i.e., the past 2.6 million years), with the exception of the past 11,700 years, which are called the Holocene Epoch. Although the precise causes of the ice ages that mark the Pleistocene are controversial, it is known that prior to that succession of glacial stages northern Europe had risen to a much higher elevation than now and that ice formed to great depths there, as in the rest of the Atlantic landmass and the Alpine areas. The Pleistocene was punctuated by warm interglacial periods separating glacial advances; during its latter part, humans occupied niches in the more southerly parts of the continent.

Glaciers are the most powerful engines provided by nature for the transport—by plucking or quarrying—of large masses of rock, and certainly the European glaciers transformed the physique both of their source areas and of the lands to which they moved. Many physical forms of northern and Alpine Europe resulted from glacial erosion, supplemented by weathering, and the surfaces of areas where the glaciers eventually withered away consisted of masses of transported material. Southern Scandinavia, southern Finland, the Swiss Plateau, and the North European Plain were thickly plastered with a variety of forms, including boulder-studded clay, gravels, sands, and the windblown deposits known as loess. New drainage patterns were formed as well. The melting of so much ice raised the level of the oceans by an estimated 320 feet (98 metres) or more, while former ice-clad lands, including the North Sea area, began to rise isostatically (see isostasy). It was not until quite late in the Holocene that the northern seas of Europe—the Irish, North, and Baltic—took, by stages, their present shape.

The Passion of Joan of Arc
READ MORE ON THIS TOPIC
history of film: European cinema
At the end of the 20th century, the notion of national cinemas had become problematic in many of the traditional film cultures of western...
Modern geologic framework
Norway: Nigardsbreen glacier
Norway: Nigardsbreen glacier
Although the exposed rocks of Europe are increasingly obscured by the works of humans, and while detailed understanding of rock patterns presents challenges even to the expert, the major formations of the continent are clear. In the north lie wide areas of worn-down ancient rocks, stripped of soil by the glaciers but compensated in some measure by the coastal plains created by uplift. In contrast, southern Europe, although incorporating such relicts as massifs of Paleozoic rocks, is essentially a youthful world, not yet fully fashioned, as evidenced by continuing seismic disturbances. Eastern Europe, based on the vast Russian Platform, is a stable world still young in surface, since the floor of its shield rocks is deeply concealed beneath Mesozoic and Cenozoic deposits, above which glacial material covers the northern half and loess deposits enrich the south. Although in scale that platform is a continental area, river development facilitates access to inland seas in both the north and the south. Ancient rocks, lying near the surface, offer mineral wealth, and the former Volga-Ural seas have left a residue of petroleum and mineral salts. For the rest, western and central Europe show great diversity of landforms and landscape as well as varied soil and mineral resources. Alpine ranges in the south and southeast combine high altitude and relief with scenic attractions and—more importantly—with high precipitation and water dispersion. Highland areas, remnants of faulted Hercynian belts surrounded by younger strata, provide another type of wooded landscape, with their contained coalfields. Iceland has the youngest landscape of Europe, with its spectacular semi-active volcanoes, high waterfalls, extensive glaciers, and steam geysers. Lastly, lowlands, of great human value, recall their varied origins—former sea and lake basins, lowlands of glacial deposition, parts of eroded synclinal structures, and alluvial and marine plains won from the sea by isostasy or, as exemplified by the Dutch polders, by the work of humans.

W. Gordon East
Brian Frederick Windley
Land of Europe
Physical features of Europe
Physical features of Europe
A contrast exists between the configuration of peninsular, or western, Europe and that of eastern Europe, which is a much larger and more continental area. A convenient division is made by a line linking the base of the peninsula of Jutland with the head of the Adriatic Sea. The western part of the continent clearly has a high proportion of coastline with good maritime access and often with inland penetration by means of navigable rivers. Continental shelves—former land surfaces that have been covered by shallow seas—are a feature of peninsular Europe, while the coasts themselves are both submerged or drowned, as in southwestern Ireland and northwestern Spain, and emergent, as in western Scotland and southern Wales, where raised former beaches are in evidence. East of the Vistula River, Europe’s expansive lowlands have something of the scale and character of those of northern Asia. The continent also comprises numerous islands, some—notably the Faroes and Iceland—located at a distance from the mainland. Fortuitously, Europe has no continuous mountain obstacle aligned north-south, corresponding, for example, to the Western Cordillera of North America and the Andes Mountains of South America, that would limit access into western Europe from the ocean.

Relief
Elevations
Lands lying at high elevations can, of course, be lands of low relief, but on the European continent relief tends to become more rugged as elevation increases. The greater part of Europe, however, combines low elevation with low relief. Only hill masses less than 800 feet (240 metres) in height rise gently within the Russian (East European) Plain, which continues northward into Finland, westward into the North European Plain, and southward in the Romanian, Bulgarian, and Hungarian plains. (The East and North European plains are known together as the European Plain.) The North European Plain, common to much of Poland, northern Germany, and Denmark, broadens in western France and continues, across the narrow seas, in southeastern Great Britain and Ireland. The lowest terrain in Europe, virtually lacking relief, stands at the head of the Caspian Sea; there the Caspian Depression reaches some 95 feet (29 metres) below sea level.

Kebnekaise
Kebnekaise
The major peninsula of Scandinavia is mostly upland and highland, with its relief greatest at the descent to the Norwegian fjords and the sea; eastward and southward the seas are approached more gently. The highest points reached in Norway and Sweden are, respectively, Galdhø Peak (8,100 feet [2,469 metres]) and Mount Kebne (6,926 feet [2,111 metres]). The highest summit in Iceland is Hvannadals Peak, at 6,952 feet (2,119 metres), while Ben Nevis, the highest peak in Great Britain, stands at an elevation of only 4,406 feet (1,343 metres).

Chaîne des Puys
Chaîne des Puys
Greater relief is found in those areas in the heart of western and central Europe where uplifted and faulted massifs survive from the Hercynian orogeny, a late Paleozoic period of mountain formation. The worn-down Ural Mountains also belong in that category, and their highest point, Mount Narodnaya (6,217 feet [1,895 metres]), corresponds approximately to that of the Massif Central in south-central France. Elevations in those areas are mainly between about 500 and 2,000 feet (150 and 600 metres), and many steep slopes are to be seen.

Map view of Europe on a geographical globe.
BRITANNICA DEMYSTIFIED
Where Does the Name Europe Come From?
Europe existed as a conceptual construct long before geographers began arguing whether there are seven continents or six, but where did the name Europe come from?
Alps: Mont Blanc massif
Alps: Mont Blanc massif
The highest elevations and the most rugged relief of the European continent are found farther south, where the structures of the Cenozoic orogeny (i.e., from the past 66 million years) provide mountain scenery. In the Alps, Mont Blanc rises to a height of 15,771 feet (4,807 metres), which is the highest point on the continent. In the Pyrenees and the Sierra Nevada of Spain, the highest of the peaks exceed 11,000 feet (3,400 metres). The Apennines, Dinaric Alps, and Balkan Mountains, as well as the arc-shaped Carpathian Mountains and their southern portion, the Transylvanian Alps, also exhibit high elevations. The highest peaks in those ranges are Mount Corno (9,554 feet [2,912 metres]) in the Abruzzi Apennines, Bobotov Kuk (8,274 feet [2,522 metres]) in the Dinaric Alps, Mount Botev (7,795 feet [2,376 metres]) in the Balkan Mountains, Gerlachovský Peak (Gerlach; 8,711 feet [2,655 metres]) in the Western Carpathians, and Mount Moldoveanu (8,346 feet [2,544 metres]) in the Transylvanian Alps. Above all, in southern Europe—Austria and Switzerland included—level, low-lying land is scarce, and mountain, plateau, and hill landforms dominate.

Physiographic units
Four broad topographic units can be simply, yet usefully, distinguished in the continent of Europe. Those are coastal and interior lowlands, central uplands and plateaus, the northwestern highlands, and southern Europe.

Coastal and interior lowlands
Pripet River
Pripet River
More than half of Europe consists of lowlands, standing mostly below 600 feet (180 metres) but infrequently rising to 1,000 feet (300 metres). Most extensive between the Baltic and White seas in the north and the Black, Azov, and Caspian seas in the south, the lowland area narrows westward, lying to the south of the northwestern highlands; it is divided also by the English Channel and the mountains and plateaus of central Europe. The Danubian and northern Italian lowlands are thus mountain-ringed islands. The northern lowlands are areas of glacial deposition, and, accordingly, their surface is diversified by such features as the Valdai Hills of western Russia; by deposits of boulder clay, sands, and gravels; by glacial lakes; and by the Pripet Marshes, a large ill-drained area of Belarus and Ukraine. Another important physical feature is the southeast-northwest zone of windblown loess deposits that have accumulated from eastern Britain to Ukraine. The Börde (German: “edge”) belt lies at the northern foot of the Central European Uplands and the Carpathians. Southward of the limits of the northern glacial ice are vales and hills, with the Paris and London basins typical examples. Superficial rock cover, elevation, drainage, and soil have sharply differentiated those lowlands—which are of prime importance to human settlement—into areas of marsh or fen, clay vales, sand and gravel heaths, or river terraces and fertile plains.

Central uplands and plateaus
La Mancha
La Mancha
The central uplands and plateaus present distinctive landscapes of rounded summits, steep slopes, valleys, and depressions. Examples of such physiographic features can be found in the Southern Uplands of Scotland, the Massif Central of France, the Meseta Central of Spain, and the Bohemian Massif. Routes detour around, or seek gaps through, those uplands—whose German appellation, Horst (“thicket”), recalls their still wooded character, while their coal basins give them great economic importance. The well-watered plateaus give rise to many rivers and are well adapted to pastoral farming. Volcanic rocks add to the diversity of those regions.

Northwestern highlands
Seven Sisters Falls
Seven Sisters Falls
The ancient, often mineral-laden rocks of the northwestern highlands, their contours softened by prolonged erosion and glaciation, are found throughout much of Iceland, in Ireland, and in northern and western Britain and Scandinavia. Those highland areas include lands of abundant rainfall—which supplies hydroelectricity and water to industrial cities—and provide summer pastures for cattle. The land in those areas, however, is of little use for crops. The coasts of the northwestern highlands—and in particular the fjords of Norway—invite maritime enterprise.

Southern Europe
Tierra de Campos
Tierra de Campos
A world of peninsulas and islands, southern Europe is subject to its own climatic regime, with fragmented but predominantly mountain and plateau landscapes. The Iberian Peninsula features interior tablelands of Paleozoic rocks that are flanked by mountains of Alpine type. The restricted lowlands lie within interior basins or fringe the coasts; those of Portugal, North Macedonia, Thrace (in the southeastern Balkans), and northern Italy are relatively large. Runoff from the Alps furnishes much water for electricity-generating stations as well as for the flow regimes of major rivers.

Drainage
Topographic influences
The drainage basins of most European rivers lie in areas originally uplifted by the Caledonian, Hercynian, and Alpine mountain-building periods that receive heavy precipitation, including snow. Some streams, notably in Finland and from southern Poland to west-central Russia, have their sources in hills of Cenozoic rocks, while others, including the Thames and Seine rivers, derive from hill country composed of Mesozoic rocks (i.e., those about 66 to 252 million years old). Drainage is directly, or via the Baltic and the Mediterranean seas, to the Atlantic and Arctic oceans and to the enclosed Caspian Sea.

Iron Gate
Iron Gate
The present courses and valley forms of the major rivers result from an intricate history involving such processes as erosion by the headstream, downcutting, capture of other rivers, faulting, and isostatic changes of land and sea levels. The Rhine, for example, once drained to the Mediterranean before being diverted to its present northerly course. The courses of many rivers—notably those of Scandinavia and the North European Plain—have been shaped since the Pleistocene Epoch (about 2,600,000 to 11,700 years ago). While the Alps, Apennines, and Carpathians provide watersheds, other mountain ranges have been cut through by rivers, as by the Danube at Vienna in Austria, Budapest in Hungary, and the Iron Gate and by the Olt in Romania. In the East European Plain the rivers are long and flow sluggishly to five seas. In western, central, and eastern Europe, rivers are largely “mature”; i.e., their valleys are graded, and their streams are navigable. Northern and southern Europe, in contrast, present still “youthful” rivers, as yet ill-graded and thus more useful for hydroelectricity than for waterways. The Atlantic rivers have scoured estuaries widening seaward, while, in the Baltic, Mediterranean, and Black seas, with minimal tidal influences, deltas and spits have been created. Since the end of the Pleistocene the upper Dnieper has failed to drain the low area of the Pripet Marshes effectively.

Hydrology
Rhine River at Lorelei
Rhine River at Lorelei
The water volume of and discharge from the rivers of Europe are governed by factors that include local conditions of precipitation, snowmelt, and rock porosity. In consequence, the rivers in the western area have more volume and higher discharges in the winter season and are at their lowest in summer. In areas of mountainous and continental climate, thanks to the runoff of snowmelt, the rivers are highest in spring and early summer. The longer rivers of the continent, notably the Rhine and the Danube, have complex regimes, since their basins extend into areas of contrasting climate. Although embanking measures have reduced the problem, flooding is a continued threat. Thus, the rivers of European Russia are liable to flood with the spring thaw, oceanic rivers after heavy or prolonged rain over the whole basin, and Alpine rivers when the warm foehn wind rapidly melts the snow. In the Mediterranean region some rivers—as in peninsular Greece—tend to dry up in summer through a combination of scant rainfall, evaporation, and porous limestone beds. In the Abruzzi region of central Italy, however, heavy rainfall, mainly in winter, permeable and porous rocks within the basin, and abundant snow combine to regulate the river regimes.

Saratov
Saratov
The Rhône River achieves a steady flow throughout the year, deriving a high input from the Cévennes Mountains—which experience heavy winter rain—plus abundant spring and summer snowmelt from the Alps via Lake Geneva. The Rhine and Danube tap supplies from the Alps in spring and summer, and the Rhine, especially, taps areas of winter rainfall maximum. The Volga River has its highest water in spring and early summer, thanks to snowmelt, and falls to a summer low. The Saône River, lying within the oceanic climatic area, tends to have a good flow year-round. The winter freeze of the east only rarely seriously affects the Danube and western European rivers.

Lake systems and marshes
South Lakeland: Windermere
South Lakeland: Windermere
Lakes cover less than 2 percent of Europe’s surface and occur mostly in areas subjected to Pleistocene glaciation. The Scandinavian Peninsula and the North European Plain account for four-fifths of the area of lakes, and in Finland lakes cover one-fifth of the surface. The other major zones of lakes lie marginal to the Alpine system, while Scotland has its many “lochs” and Ireland its “loughs.” Lakes survive where the inflow of water exceeds the loss from evaporation and outflow, but many eventually will disappear through alluvial accumulation. Their origins lie in the glacial excavation of softer rocks, in the building of dams by morainic material, and in tectonic, or deforming, forces, which may create depressions. The last explanation clearly applies to Alpine lakes, to many of those in the British Isles, including the small but scenic ones of the Lake District of England, and also to those of central Sweden. Volcanic crater lakes are found in central Italy, and small lakes of the lagoon type are found along the Baltic and Mediterranean shores, where spits have lengthened parallel to the coast and hence cut off sea access.

A cultivable zone (the Marschen) has formed along the low-lying, reclaimed marshes along the North Sea in Germany and the Netherlands, and characteristically the estuaries of Europe’s tidal rivers are edged by flat alluvial marshes. Fens, as exemplified by the polders in the Netherlands and the lowlands in eastern England, are made up of either alluvium or peat and stand too low to be drained effectively, except by continuous pumping. The continent’s largest marshland is the Pripet Marshes of Belarus and Ukraine.

Soils
distribution of European soil groups
distribution of European soil groups
The soil patterns of Europe are clearly and zonally arranged in the East European Plain but are much more complicated in the rest of the continent, which exhibits a more varied geology and relief. Tundra soils occur only in Iceland, in the most northerly parts of Russia and Finland, and in high areas of Sweden and Norway; they tend to be acidic, waterlogged, and poor in plant nutrients. South of that zone and extending around the Gulf of Bothnia and across Finland and Russia north of the upper Volga, cool-climate podzols are characteristic. Those soils, formed in a coniferous woodland setting, suffer from acidity, the leaching of minerals, hardpan formation and permafrost beneath the topsoil, and excess moisture; given the climate, they are virtually useless for crops.

podzolic soil
podzolic soil
The larger zone to the south stretches from central Russia westward to Great Britain and Ireland and southward from central Sweden, southern Norway, and Finland to the Pyrenees, Alps, and Balkan Mountains. In that region temperate-climate podzols and brown forest soils have developed in a mixed-forest environment, and those soils, which are highly varied, usually have a good humus content. Locally, the farmer recognizes soils of heavy to light texture, their different water-holding capacities, depth, alkalinity or acidity, and their suitability for specific crops. The soils within that zone that cover loess are excellent loams; lowland clays, when broken down, also exhibit high quality, as do alluvial soils; in contrast, areas covered with dry, sandy, or gravelly soils are more useful for residential and amenity purposes than for farming. In southwestern Russia, in portions of the Transcaucasus region, and especially in Ukraine, some soils that have been formed in areas of grass steppe are chernozems (black earths)—deep, friable, humus-rich, and renowned for their fertility. In the formerly wooded steppe lying to the north of the grass steppe in both south-central Russia and the lower Danubian lowlands, soils of somewhat less value are known as degraded chernozems and gray forest soils. At best, chestnut soils—some needing only water to be productive—and, at worst, solonetzic (highly saline) soils cover areas of increasing aridity eastward of Ukraine to the Ural River. Lastly, in southern Europe, where the countryside is fragmented by mountains, plateaus, and hills, much soil has been lost from sloping ground through forest destruction and erosion, and a bright red soil (terra rossa), heavy and clay-rich, is found in many valleys and depressions.

Chernozem soil profile
Chernozem soil profile
The origin, nature, variety, and classification of Europe’s soils raise highly complex problems. So many factors—bedrock, drainage, plant decomposition, biological action, climate, and time—are involved. Humans, moreover, have done much to modify soils and, with increasing scientific knowledge, to render soils of greater and continuing value by drainage, crop rotation, and the input of suitable combinations of chemicals. In such ways, naturally poor soils can—as has been shown in Denmark—be made productive. The practice of an enforced “resting” of soils, by leaving fields fallow to recuperate, began to disappear with the agricultural revolution of the 18th century, and agronomic science continues to show how the best results can be achieved from specific soils and also how to curtail soil erosion. Europe’s arable land lies mainly in the lowlands, which have podzolic, brown, chernozem, and chestnut soils, although the upper elevation level of cultivation, as that of animal husbandry, rises southward.

Climate of Europe
precipitation, annual; Europe
precipitation, annual; Europe
Europe: major climate regions
Europe: major climate regions
As Francis Bacon, the great English Renaissance man of letters, aptly observed, “Every wind has its weather.” It is air mass circulation that provides the main key to Europe’s climate, the more so since masses of Atlantic Ocean origin can pass freely through the lowlands, except in the case of the Caledonian mountains of Norway. Polar air masses derived from areas close to Iceland and tropical masses from the Azores bring, respectively, very different conditions of temperature and humidity and produce different climatic effects as they move eastward. Continental air masses from eastern Europe have equally easy access westward. The almost continuous belt of mountains trending west-east across Europe also impedes the interchange of tropical and polar air masses.

Air pressure belts
Patterns of some permanence controlling air mass circulation are created by belts of air pressure over five areas. They are the Icelandic low, over the North Atlantic; the Azores high, a high-pressure ridge; the (winter) Mediterranean low; the Siberian high, centred over Central Asia in winter but extending westward; and the Asiatic low, a low-pressure summertime system over southwestern Asia. Given those pressure conditions, westerly winds prevail in northwestern Europe, becoming especially strong in winter. The winter westerlies, often from the southwest, bring in warm tropical air; in summer, by contrast, they veer to the northwest and bring in cooler Arctic or subarctic air. In Mediterranean Europe the rain-bearing westerlies chiefly affect the western areas, but only in winter. In winter the eastern Mediterranean basin experiences bitter easterly and northeasterly winds derived from the Siberian high. Those winds’ occasional projection westward explains unusually cold winters in western and central Europe, while exceptionally warm winters in that region result from the sustained flow of tropical maritime air masses. In summer the Azores high moves 5°–10° of latitude northward and extends farther eastward, preventing the entry of cyclonic storms into the resultantly dry Mediterranean region. The eastern basin, however, experiences the hot and dry north and northeast summer winds called etesian by the ancient Greeks. In summer too, the Siberian high gives place to a low-pressure system extending westward, so that westerly air masses can penetrate deeply through the continent, making summer generally a wet season.

It is because of the interplay of so many different air masses that Europe experien

댓글목록

등록된 댓글이 없습니다.

회원로그인

회원가입
사이트 내 전체검색
Copyright © CANADAKOREA.CA. All rights reserved.

Contact E-mail : canadakorea@hotmail.com