유전자-JENE- DNA - The Genetic material for all forms of life on earth > biology 생물

본문 바로가기

biology 생물

유전자-JENE- DNA - The Genetic material for all forms of life on earth

페이지 정보

profile_image
작성자 canada
댓글 0건 조회 779회 작성일 17-01-27 09:02

본문

유전자-JENE- DNA - The Genetic material for all forms of life on earth

https://ko.wikipedia.org/wiki/%EC%9C%A0%EC%A0%84%EC%9E%90
===========================================================

유전자는 모든 생물의 고유한 특성에 대한 정보를 담고 있는 부분으로 다음 세대로 전해지는 물질로 DNA(디옥시리보핵산/Deoxyribo Nucleic Acid)서열 중에 특정 의미를 갖는 부분입니다.
위키백과, 우리 모두의 백과사전.


염색체(오른쪽 위)는 DNA가 실타래처럼 감겨 있는 구조로 되어 있다. 유전자는 DNA의 이중 나선 한 구간을 차지하
유전자란 - 수산·해양 LMO 안전성센터 - 국립수산과학원https://www.nifs.go.kr › lmo › lmo › lmo4_11


Feedback

유전자 - 나무위키https://namu.wiki › 유전자
·
Translate this page
Oct 12, 2022 — 자가 복제가 되는 성질의 분자 조합물이자 부모가 자식에게 특성을 물려주는 현상인 유전을 일으키는 단위이다. 건물을 짓기 위해 설계도가 필요하듯, ...
‎이기적 유전자 · ‎유전자 검사 · ‎DNA

유전자 - 위키백과, 우리 모두의 백과사전https://ko.wikipedia.org › wiki › 유...
·
Translate this page
유전자(遺傳子, 영어: gene)는 유전의 기본단위이다. 지구상의 모든 생물은 유전자를 지니고 있다. 유전자에는 생물의 세포를 구성하고 유지하고, 이것들이 유기적인 ...
‎유전자 발현 · ‎유전자 이동 · ‎유전자형 · ‎위유전자

유전자와 염색체 - 기초 - MSD 매뉴얼 - 일반인용https://www.msdmanuals.com › 유전학
·
Translate this page
유전자형(또는 유전체)은 사람의 고유한 유전자 조합이나 유전자 구조를 의미합니다. 따라서 유전자형은 사람의 신체가 단백질을 합성하는 기제뿐 아니라 해당 신체가 구축 ...

유전자와 검사 | 유전학이란 | 의학유전학강좌 - 서울아산병원https://www.amc.seoul.kr › content
·
Translate this page
유전자는 DNA로 구성된 유전정보단위로서, 세포의 생명현상을 유지하고 특정한 기능을 수행하는데 필요한 모든 단백질을 만들기 위해 완벽한 명령체제를 지시 전달하는 ...
‎일반적 개요 · ‎암유전자검사는 현재 어느 단계... · ‎유전자검사의 위험요인은 무엇...

유전자(gene) | 알기쉬운의학용어 | 의료정보 - 서울아산병원https://amc.seoul.kr › easymediterm
·
Translate this page
유전자란 유전 형질을 나타내는 원인이 되는 인자입니다. 부모의 특징이 다음 세대인 자식에게 나타날 때, 그 특징을 만들어내는 인자로 유전 정보의 기본 단위를 말합니다 ...

유전자는 어떻게 우리 몸의 모양과 기능을 만들어낼까?https://www.sciencetimes.co.kr › news
·
Translate this page
Apr 9, 2021 — 유전자는 우리 몸을 이루는 세포의 핵 속에 있다. 세포핵에는 DNA가 있는데, 이 DNA에 유전자가 있다. DNA의 기본 단위는 염기와 당, 인산이 결합한 ...

유전자 - 위키낱말사전https://ko.wiktionary.org › wiki › 유...
·
Translate this page
1. 유전 형질을 지닌 단위, 염기서열 속에 들어있다. 번역. 그리스
======================================
The largest scientific study of its kind estimates that Earth could play host to more than 1 trillion different species, which means we've probably only identified a vanishingly small proportion of them – only about one-thousandth of 1 percent.
life forms -- 5.6 million species
A life form or lifeform is an entity that is living.[1][2]
Estimates on the number of Earth's current species range from 10 million to 14 million,[3] of which about 1.2 million have been documented and over 86 percent have not yet been described.[4] More recently, in May 2016, scientists reported that 1 trillion species are estimated to be on Earth currently with only one-thousandth of one percent described.[5]
More than 99% of all species, amounting to over five billion species,[6] that ever lived on Earth are estimated to be extinct.[7][8]

Frohttps://en.wikipedia.org/wiki/Genem Wikipedia, the free encyclopedia

Jump to: navigation, search
This article is about the heritable unit for transmission of biological traits. For other uses, see Gene (disambiguation).

Chromosome
(107 - 1010 bp)
DNA
Gene
(103 - 106 bp )
Function

A gene is a region of DNA that encodes function. A chromosome consists of a long strand of DNA containing many genes. A human chromosome can have up to 500 million base pairs of DNA with thousands of genes.
A gene is a sequence of DNA or RNA which codes for a molecule that has a function. The DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes (many different genes) as well as gene–environment interactions. Some genetic traits are instantly visible, such as eye color or number of limbs, and some are not, such as blood type, risk for specific diseases, or the thousands of basic biochemical processes that comprise life.
Genes can acquire mutations in their sequence, leading to different variants, known as alleles, in the population. These alleles encode slightly different versions of a protein, which cause different phenotypical traits. Usage of the term "having a gene" (e.g., "good genes," "hair colour gene") typically refers to containing a different allele of the same, shared gene. Genes evolve due to natural selection or survival of the fittest of the alleles.
The concept of a gene continues to be refined as new phenomena are discovered.[1] For example, regulatory regions of a gene can be far removed from its coding regions, and coding regions can be split into several exons. Some viruses store their genome in RNA instead of DNA and some gene products are functional non-coding RNAs. Therefore, a broad, modern working definition of a gene is any discrete locus of heritable, genomic sequence which affect an organism's traits by being expressed as a functional product or by regulation of gene expression.[2][3]
The term gene was introduced by Danish botanist, plant physiologist and geneticist Wilhelm Johannsen in 1905.[4] It is inspired by the ancient Greek: γόνος, gonos, that means offspring and procreation.

Contents  [hide] 
1
History
1.1
Discovery of discrete inherited units
1.2
Discovery of DNA
1.3
Modern synthesis and its successors
2
Molecular basis
2.1
DNA
2.2
Chromosomes
3
Structure and function
3.1
Structure
3.2
Functional definitions
4
Gene expression
4.1
Genetic code
4.2
Transcription
4.3
Translation
4.4
Regulation
4.5
RNA genes
5
Inheritance
5.1
Mendelian inheritance
5.2
DNA replication and cell division
5.3
Molecular inheritance
6
Molecular evolution
6.1
Mutation
6.2
Sequence homology
6.3
Origins of new genes
7
Genome
7.1
Number of genes
7.2
Essential genes
7.3
Genetic and genomic nomenclature
8
Genetic engineering
9
See also
10
References
10.1
Main textbook
10.2
References
10.3
Further reading
11
External links

History[edit]


Gregor Mendel
Main article: History of genetics
Discovery of discrete inherited units[edit]
The existence of discrete inheritable units was first suggested by Gregor Mendel (1822–1884).[5] From 1857 to 1864, in Brno (Czech Republic), he studied inheritance patterns in 8000 common edible pea plants, tracking distinct traits from parent to offspring. He described these mathematically as 2n combinations where n is the number of differing characteristics in the original peas. Although he did not use the term gene, he explained his results in terms of discrete inherited units that give rise to observable physical characteristics. This description prefigured Wilhelm Johannsen's distinction between genotype (the genetic material of an organism) and phenotype (the visible traits of that organism). Mendel was also the first to demonstrate independent assortment, the distinction between dominant and recessive traits, the distinction between a heterozygote and homozygote, and the phenomenon of discontinuous inheritance.
Prior to Mendel's work, the dominant theory of heredity was one of blending inheritance, which suggested that each parent contributed fluids to the fertilisation process and that the traits of the parents blended and mixed to produce the offspring. Charles Darwin developed a theory of inheritance he termed pangenesis, from Greek pan ("all, whole") and genesis ("birth") / genos ("origin").[6][7] Darwin used the term gemmule to describe hypothetical particles that would mix during reproduction.
Mendel's work went largely unnoticed after its first publication in 1866, but was rediscovered in the late 19th century by Hugo de Vries, Carl Correns, and Erich von Tschermak, who (claimed to have) reached similar conclusions in their own research.[8] Specifically, in 1889, Hugo de Vries published his book Intracellular Pangenesis,[9] in which he postulated that different characters have individual hereditary carriers and that inheritance of specific traits in organisms comes in particles. De Vries called these units "pangenes" (Pangens in German), after Darwin's 1868 pangenesis theory.
Sixteen years later, in 1905, Wilhelm Johannsen introduced the term 'gene'[4] and William Bateson that of 'genetics'[10] while Eduard Strasburger, amongst others, still used the term 'pangene' for the fundamental physical and functional unit of heredity.[11]
Discovery of DNA[edit]
Advances in understanding genes and inheritance continued throughout the 20th century. Deoxyribonucleic acid (DNA) was shown to be the molecular repository of genetic information by experiments in the 1940s to 1950s.[12][13] The structure of DNA was studied by Rosalind Franklin and Maurice Wilkins using X-ray crystallography, which led James D. Watson and Francis Crick to publish a model of the double-stranded DNA molecule whose paired nucleotide bases indicated a compelling hypothesis for the mechanism of genetic replication.[14][15]
In the early 1950s the prevailing view was that the genes in a chromosome acted like discrete entities, indivisible by recombination and arranged like beads on a string. The experiments of Benzer using mutants defective in the rII region of bacteriophage T4 (1955-1959) showed that individual genes have a simple linear structure and are likely to be equivalent to a linear section of DNA.[16][17]
Collectively, this body of research established the central dogma of molecular biology, which states that proteins are translated from RNA, which is transcribed from DNA. This dogma has since been shown to have exceptions, such as reverse transcription in retroviruses. The modern study of genetics at the level of DNA is known as molecular genetics.
In 1972, Walter Fiers and his team at the University of Ghent were the first to determine the sequence of a gene: the gene for Bacteriophage MS2 coat protein.[18] The subsequent development of chain-termination DNA sequencing in 1977 by Frederick Sanger improved the efficiency of sequencing and turned it into a routine laboratory tool.[19] An automated version of the Sanger method was used in early phases of the Human Genome Project.[20]
Modern synthesis and its successors[edit]
Main article: Modern synthesis (20th century)
The theories developed in the early 20th century to integrate Mendelian genetics with Darwinian evolution are called the modern synthesis, a term introduced by Julian Huxley.[21]
Evolutionary biologists have subsequently modified this concept, such as George C. Williams' gene-centric view of evolution. He proposed an evolutionary concept of the gene as a unit of natural selection with the definition: "that which segregates and recombines with appreciable frequency."[22]:24 In this view, the molecular gene transcribes as a unit, and the evolutionary gene inherits as a unit. Related ideas emphasizing the centrality of genes in evolution were popularized by Richard Dawkins.[23][24]
Molecular basis[edit]
Main article: DNA


The chemical structure of a four base pair fragment of a DNA double helix. The sugar-phosphate backbone chains run in opposite directions with the bases pointing inwards, base-pairing A to T and C to G with hydrogen bonds.
DNA[edit]
The vast majority of living organisms encode their genes in long strands of DNA (deoxyribonucleic acid). DNA consists of a chain made from four types of nucleotide subunits, each composed of: a five-carbon sugar (2'-deoxyribose), a phosphate group, and one of the four bases adenine, cytosine, guanine, and thymine.[25]:2.1
Two chains of DNA twist around each other to form a DNA double helix with the phosphate-sugar backbone spiralling around the outside, and the bases pointing inwards with adenine base pairing to thymine and guanine to cytosine. The specificity of base pairing occurs because adenine and thymine align to form two hydrogen bonds, whereas cytosine and guanine form three hydrogen bonds. The two strands in a double helix must therefore be complementary, with their sequence of bases matching such that the adenines of one strand are paired with the thymines of the other strand, and so on.[25]:4.1
Due to the chemical composition of the pentose residues of the bases, DNA strands have directionality. One end of a DNA polymer contains an exposed hydroxyl group on the deoxyribose; this is known as the 3' end of the molecule. The other end contains an exposed phosphate group; this is the 5' end. The two strands of a double-helix run in opposite directions. Nucleic acid synthesis, including DNA replication and transcription occurs in the 5'→3' direction, because new nucleotides are added via a dehydration reaction that uses the exposed 3' hydroxyl as a nucleophile.[26]:27.2
The expression of genes encoded in DNA begins by transcribing the gene into RNA, a second type of nucleic acid that is very similar to DNA, but whose monomers contain the sugar ribose rather than deoxyribose. RNA also contains the base uracil in place of thymine. RNA molecules are less stable than DNA and are typically single-stranded. Genes that encode proteins are composed of a series of three-nucleotide sequences called codons, which serve as the "words" in the genetic "language". The genetic code specifies the correspondence during protein translation between codons and amino acids. The genetic code is nearly the same for all known organisms.[25]:4.1
Chromosomes[edit]


Fluorescent microscopy image of a human female karyotype, showing 23 pairs of chromosomes . The DNA is stained red, with regions rich in housekeeping genes further stained in green. The largest chromosomes are around 10 times the size of the smallest.[27]
The total complement of genes in an organism or cell is known as its genome, which may be stored on one or more chromosomes. A chromosome consists of a single, very long DNA helix on which thousands of genes are encoded.[25]:4.2 The region of the chromosome at which a particular gene is located is called its locus. Each locus contains one allele of a gene; however, members of a population may have different alleles at the locus, each with a slightly different gene sequence.
The majority of eukaryotic genes are stored on a set of large, linear chromosomes. The chromosomes are packed within the nucleus in complex with storage proteins called histones to form a unit called a nucleosome. DNA packaged and condensed in this way is called chromatin.[25]:4.2 The manner in which DNA is stored on the histones, as well as chemical modifications of the histone itself, regulate whether a particular region of DNA is accessible for gene expression. In addition to genes, eukaryotic chromosomes contain sequences involved in ensuring that the DNA is copied without degradation of end regions and sorted into daughter cells during cell division: replication origins, telomeres and the centromere.[25]:4.2 Replication origins are the sequence regions where DNA replication is initiated to make two copies of the chromosome. Telomeres are long stretches of repetitive sequence that cap the ends of the linear chromosomes and prevent degradation of coding and regulatory regions during DNA replication. The length of the telomeres decreases each time the genome is replicated and has been implicated in the aging process.[28] The centromere is required for binding spindle fibres to separate sister chromatids into daughter cells during cell division.[25]:18.2
Prokaryotes (bacteria and archaea) typically store their genomes on a single large, circular chromosome. Similarly, some eukaryotic organelles contain a remnant circular chromosome with a small number of genes.[25]:14.4 Prokaryotes sometimes supplement their chromosome with additional small circles of DNA called plasmids, which usually encode only a few genes and are transferable between individuals. For example, the genes for antibiotic resistance are usually encoded on bacterial plasmids and can be passed between individual cells, even those of different species, via horizontal gene transfer.[29]
Whereas the chromosomes of prokaryotes are relatively gene-dense, those of eukaryotes often contain regions of DNA that serve no obvious function. Simple single-celled eukaryotes have relatively small amounts of such DNA, whereas the genomes of complex multicellular organisms, including humans, contain an absolute majority of DNA without an identified function.[30] This DNA has often been referred to as "junk DNA". However, more recent analyses suggest that, although protein-coding DNA makes up barely 2% of the human genome, about 80% of the bases in the genome may be expressed, so the term "junk DNA" may be a misnomer.[3]
Structure and function[edit]
Structure[edit]

Regulatory sequence
Regulatory sequence
Enhancer
/silencer
Promoter
5'UTR
Open reading frame
3'UTR
Enhancer
/silencer
Proximal
Core
Start
Stop
Terminator
Transcription
DNA
Exon
Exon
Exon
Intron
Intron
Post-transcriptional
modification
Pre-
mRNA
Protein coding region
5'cap
Poly-A tail
Translation
Mature
mRNA
Protein

The structure of a eukaryotic protein-coding gene. Regulatory sequence controls when and where expression occurs for the protein coding region (red). Promoter and enhancer regions (yellow) regulate the transcription of the gene into a pre-mRNA which is modified to remove introns (light grey) and add a 5' cap and poly-A tail (dark grey). The mRNA 5' and 3' untranslated regions (blue) regulate translation into the final protein product.[31]

Polycistronic operon
Regulatory sequence
Regulatory sequence
Enhancer
Enhancer
/silencer
/silencer
Operator
Promoter
5'UTR
ORF
ORF
UTR
3'UTR
Start
Start
Stop
Stop
Terminator
Transcription
DNA
RBS
RBS
Protein coding region
Protein coding region
mRNA
Translation
Protein

The structure of a prokaryotic operon of protein-coding genes. Regulatory sequence controls when expression occurs for the multiple protein coding regions (red). Promoter, operator and enhancer regions (yellow) regulate the transcription of the gene into an mRNA. The mRNA untranslated regions (blue) regulate translation into the final protein products.[31]
The structure of a gene consists of many elements of which the actual protein coding sequence is often only a small part. These include DNA regions that are not transcribed as well as untranslated regions of the RNA.
Flanking the open reading frame, genes contain a regulatory sequence that is required for their expression. First, genes require a promoter sequence. The promoter is recognized and bound by transcription factors and RNA polymerase to initiate transcription.[25]:7.1 The recognition typically occurs as a consensus sequence like the TATA box. A gene can have more than one promoter, resulting in messenger RNAs (mRNA) that differ in how far they extend in the 5' end.[32] Highly transcribed genes have "strong" promoter sequences that form strong associations with transcription factors, thereby initiating transcription at a high rate. Others genes have "weak" promoters that form weak associations with transcription factors and initiate transcription less frequently.[25]:7.2 Eukaryotic promoter regions are much more complex and difficult to identify than prokaryotic promoters.[25]:7.3
Additionally, genes can have regulatory regions many kilobases upstream or downstream of the open reading frame that alter expression. These act by binding to transcription factors which then cause the DNA to loop so that the regulatory sequence (and bound transcription factor) become close to the RNA polymerase binding site.[33] For example, enhancers increase transcription by binding an activator protein which then helps to recruit the RNA polymerase to the promoter; conversely silencers bind repressor proteins and make the DNA less available for RNA polymerase.[34]
The transcribed pre-mRNA contains untranslated regions at both ends which contain a ribosome binding site, terminator and start and stop codons.[35] In addition, most eukaryotic open reading frames contain untranslated introns which are removed before the exons are translated. The sequences at the ends of the introns, dictate the splice sites to generate the final mature mRNA which encodes the protein or RNA product.[36]
Many prokaryotic genes are organized into operons, with multiple protein-coding sequences that are transcribed as a unit.[37][38] The genes in an operon are transcribed as a continuous messenger RNA, referred to as a polycistronic mRNA. The term cistron in this context is equivalent to gene. The transcription of an operon’s mRNA is often controlled by a repressor that can occur in an active or inactive state depending on the presence of certain specific metabolites.[39] When active, the repressor binds to a DNA sequence at the beginning of the operon, called the operator region, and represses transcription of the operon; when the repressor is inactive transcription of the operon can occur (see e.g. Lac operon). The products of operon genes typically have related functions and are involved in the same regulatory network.[25]:7.3
Functional definitions[edit]
Defining exactly what section of a DNA sequence comprises a gene is difficult.[1] Regulatory regions of a gene such as enhancers do not necessarily have to be close to the coding sequence on the linear molecule because the intervening DNA can be looped out to bring the gene and its regulatory region into proximity. Similarly, a gene's introns can be much larger than its exons. Regulatory regions can even be on entirely different chromosomes and operate in trans to allow regulatory regions on one chromosome to come in contact with target genes on another chromosome.[40][41]
Early work in molecular genetics suggested the concept that one gene makes one protein. This concept (originally called the one gene-one enzyme hypothesis) emerged from an influential 1941 paper by George Beadle and Edward Tatum on experiments with mutants of the fungus Neurospora crassa.[42] Norman Horowitz, an early colleague on the Neurospora research, reminisced in 2004 that “these experiments founded the science of what Beadle and Tatum called biochemical genetics. In actuality they proved to be the opening gun in what became molecular genetics and all the developments that have followed from that.”[43] The one gene-one protein concept has been refined since the discovery of genes that can encode multiple proteins by alternative splicing and coding sequences split in short section across the genome whose mRNAs are concatenated by trans-splicing.[3][44][45]
A broad operational definition is sometimes used to encompass the complexity of these diverse phenomena, where a gene is defined as a union of genomic sequences encoding a coherent set of potentially overlapping functional products.[10] This definition categorizes genes by their functional products (proteins or RNA) rather than their specific DNA loci, with regulatory elements classified as gene-associated regions.[10]
Gene expression[edit]
Main article: Gene expression
In all organisms, two steps are required to read the information encoded in a gene's DNA and produce the protein it specifies. First, the gene's DNA is transcribed to messenger RNA (mRNA).[25]:6.1 Second, that mRNA is translated to protein.[25]:6.2 RNA-coding genes must still go through the first step, but are not translated into protein.[46] The process of producing a biologically functional molecule of either RNA or protein is called gene expression, and the resulting molecule is called a gene product.
Genetic code[edit]


Schematic of a single-stranded RNA molecule illustrating a series of three-base codons. Each three-nucleotide codon corresponds to an amino acid when translated to protein
The nucleotide sequence of a gene's DNA specifies the amino acid sequence of a protein through the genetic code. Sets of three nucleotides, known as codons, each correspond to a specific amino acid.[25]:6 The principle that three sequential bases of DNA code for each amino acid was demonstrated in 1961 using frameshift mutations in the rIIB gene of bacteriophage T4[47] (see Crick, Brenner et al. experiment).
Additionally, a "start codon", and three "stop codons" indicate the beginning and end of the protein coding region. There are 64 possible codons (four possible nucleotides at each of three positions, hence 43 possible codons) and only 20 standard amino acids; hence the code is redundant and multiple codons can specify the same amino acid. The correspondence between codons and amino acids is nearly universal among all known living organisms.[48]
Transcription[edit]
Transcription produces a single-stranded RNA molecule known as messenger RNA, whose nucleotide sequence is complementary to the DNA from which it was transcribed.[25]:6.1 The mRNA acts as an intermediate between the DNA gene and its final protein product. The gene's DNA is used as a template to generate a complementary mRNA. The mRNA matches the sequence of the gene's DNA coding strand because it is synthesised as the complement of the template strand. Transcription is performed by an enzyme called an RNA polymerase, which reads the template strand in the 3' to 5' direction and synthesizes the RNA from 5' to 3'. To initiate transcription, the polymerase first recognizes and binds a promoter region of the gene. Thus, a major mechanism of gene regulation is the blocking or sequestering the promoter region, either by tight binding by repressor molecules that physically block the polymerase, or by organizing the DNA so that the promoter region is not accessible.[25]:7
In prokaryotes, transcription occurs in the cytoplasm; for very long transcripts, translation may begin at the 5' end of the RNA while the 3' end is still being transcribed. In eukaryotes, transcription occurs in the nucleus, where the cell's DNA is stored. The RNA molecule produced by the polymerase is known as the primary transcript and undergoes post-transcriptional modifications before being exported to the cytoplasm for translation. One of the modifications performed is the splicing of introns which are sequences in the transcribed region that do not encode protein. Alternative splicing mechanisms can result in mature transcripts from the same gene having different sequences and thus coding for different proteins. This is a major form of regulation in eukaryotic cells and also occurs in some prokaryotes.[25]:7.5[49]
Translation[edit]


Protein coding genes are transcribed to an mRNA intermediate, then translated to a functional protein. RNA-coding genes are transcribed to a functional non-coding RNA. (PDB: 3BSE, 1OBB, 3TRA​)
Translation is the process by which a mature mRNA molecule is used as a template for synthesizing a new protein.[25]:6.2 Translation is carried out by ribosomes, large complexes of RNA and protein responsible for carrying out the chemical reactions to add new amino acids to a growing polypeptide chain by the formation of peptide bonds. The genetic code is read three nucleotides at a time, in units called codons, via interactions with specialized RNA molecules called transfer RNA (tRNA). Each tRNA has three unpaired bases known as the anticodon that are complementary to the codon it reads on the mRNA. The tRNA is also covalently attached to the amino acid specified by the complementary codon. When the tRNA binds to its complementary codon in an mRNA strand, the ribosome attaches its amino acid cargo to the new polypeptide chain, which is synthesized from amino terminus to carboxyl terminus. During and after synthesis, most new proteins must fold to their active three-dimensional structure before they can carry out their cellular functions.[25]:3
Regulation[edit]
Genes are regulated so that they are expressed only when the product is needed, since expression draws on limited resources.[25]:7 A cell regulates its gene expression depending on its external environment (e.g. available nutrients, temperature and other stresses), its internal environment (e.g. cell division cycle, metabolism, infection status), and its specific role if in a multicellular organism. Gene expression can be regulated at any step: from transcriptional initiation, to RNA processing, to post-translational modification of the protein. The regulation of lactose metabolism genes in E. coli (lac operon) was the first such mechanism to be described in 1961.[50]
RNA genes[edit]
A typical protein-coding gene is first copied into RNA as an intermediate in the manufacture of the final protein product.[25]:6.1 In other cases, the RNA molecules are the actual functional products, as in the synthesis of ribosomal RNA and transfer RNA. Some RNAs known as ribozymes are capable of enzymatic function, and microRNA has a regulatory role. The DNA sequences from which such RNAs are transcribed are known as non-coding RNA genes.[46]
Some viruses store their entire genomes in the form of RNA, and contain no DNA at all.[51][52] Because they use RNA to store genes, their cellular hosts may synthesize their proteins as soon as they are infected and without the delay in waiting for transcription.[53] On the other hand, RNA retroviruses, such as HIV, require the reverse transcription of their genome from RNA into DNA before their proteins can be synthesized. RNA-mediated epigenetic inheritance has also been observed in plants and very rarely in animals.[54]
Inheritance[edit]


Inheritance of a gene that has two different alleles (blue and white). The gene is located on an autosomal chromosome. The white allele is recessive to the blue allele. The probability of each outcome in the children's generation is one quarter, or 25 percent.
Main articles: Mendelian inheritance and Heredity
Organisms inherit their genes from their parents. Asexual organisms simply inherit a complete copy of their parent's genome. Sexual organisms have two copies of each chromosome because they inherit one complete set from each parent.[25]:1
Mendelian inheritance[edit]
According to Mendelian inheritance, variations in an organism's phenotype (observable physical and behavioral characteristics) are due in part to variations in its genotype (particular set of genes). Each gene specifies a particular trait with different sequence of a gene (alleles) giving rise to different phenotypes. Most eukaryotic organisms (such as the pea plants Mendel worked on) have two alleles for each trait, one inherited from each parent.[25]:20
Alleles at a locus may be dominant or recessive; dominant alleles give rise to their corresponding phenotypes when paired with any other allele for the same trait, whereas recessive alleles give rise to their corresponding phenotype only when paired with another copy of the same allele. If you know the genotypes of the organisms, you can determine which alleles are dominant and which are recessive. For example, if the allele specifying tall stems in pea plants is dominant over the allele specifying short stems, then pea plants that inherit one tall allele from one parent and one short allele from the other parent will also have tall stems. Mendel's work demonstrated that alleles assort independently in the production of gametes, or germ cells, ensuring variation in the next generation. Although Mendelian inheritance remains a good model for many traits determined by single genes (including a number of well-known genetic disorders) it does not include the physical processes of DNA replication and cell division.[55][56]
DNA replication and cell division[edit]
The growth, development, and reproduction of organisms relies on cell division; the process by which a single cell divides into two usually identical daughter cells. This requires first making a duplicate copy of every gene in the genome in a process called DNA replication.[25]:5.2 The copies are made by specialized enzymes known as DNA polymerases, which "read" one strand of the double-helical DNA, known as the template strand, and synthesize a new complementary strand. Because the DNA double helix is held together by base pairing, the sequence of one strand completely specifies the sequence of its complement; hence only one strand needs to be read by the enzyme to produce a faithful copy. The process of DNA replication is semiconservative; that is, the copy of the genome inherited by each daughter cell contains one original and one newly synthesized strand of DNA.[25]:5.2
The rate of DNA replication in living cells was first measured as the rate of phage T4 DNA elongation in phage-infected E. coli and found to be impressively rapid.[57] During the period of exponential DNA increase at 37 °C, the rate of elongation was 749 nucleotides per second.
After DNA replication is complete, the cell must physically separate the two copies of the genome and divide into two distinct membrane-bound cells.[25]:18.2 In prokaryotes (bacteria and archaea) this usually occurs via a relatively simple process called binary fission, in which each circular genome attaches to the cell membrane and is separated into the daughter cells as the membrane invaginates to split the cytoplasm into two membrane-bound portions. Binary fission is extremely fast compared to the rates of cell division in eukaryotes. Eukaryotic cell division is a more complex process known as the cell cycle; DNA replication occurs during a phase of this cycle known as S phase, whereas the process of segregating chromosomes and splitting the cytoplasm occurs during M phase.[25]:18.1
Molecular inheritance[edit]
The duplication and transmission of genetic material from one generation of cells to the next is the basis for molecular inheritance, and the link between the classical and molecular pictures of genes. Organisms inherit the characteristics of their parents because the cells of the offspring contain copies of the genes in their parents' cells. In asexually reproducing organisms, the offspring will be a genetic copy or clone of the parent organism. In sexually reproducing organisms, a specialized form of cell division called meiosis produces cells called gametes or germ cells that are haploid, or contain only one copy of each gene.[25]:20.2 The gametes produced by females are called eggs or ova, and those produced by males are called sperm. Two gametes fuse to form a diploid fertilized egg, a single cell that has two sets of genes, with one copy of each gene from the mother and one from the father.[25]:20
During the process of meiotic cell division, an event called genetic recombination or crossing-over can sometimes occur, in which a length of DNA on one chromatid is swapped with a length of DNA on the corresponding homologous non-sister chromatid. This can result in reassortment of otherwise linked alleles.[25]:5.5 The Mendelian principle of independent assortment asserts that each of a parent's two genes for each trait will sort independently into gametes; which allele an organism inherits for one trait is unrelated to which allele it inherits for another trait. This is in fact only true for genes that do not reside on the same chromosome, or are located very far from one another on the same chromosome. The closer two genes lie on the same chromosome, the more closely they will be associated in gametes and the more often they will appear together; genes that are very close are essentially never separated because it is extremely unlikely that a crossover point will occur between them. This is known as genetic linkage.[58]
Molecular evolution[edit]
Main article: Molecular evolution
Mutation[edit]
DNA replication is for the most part extremely accurate, however errors (mutations) do occur.[25]:7.6 The error rate in eukaryotic cells can be as low as 10−8 per nucleotide per replication,[59][60] whereas for some RNA viruses it can be as high as 10−3.[61] This means that each generation, each human genome accumulates 1–2 new mutations.[61] Small mutations can be caused by DNA replication and the aftermath of DNA damage and include point mutations in which a single base is altered and frameshift mutations in which a single base is inserted or deleted. Either of these mutations can change the gene by missense (change a codon to encode a different amino acid) or nonsense (a premature stop codon).[62] Larger mutations can be caused by errors in recombination to cause chromosomal abnormalities including the duplication, deletion, rearrangement or inversion of large sections of a chromosome. Additionally, DNA repair mechanisms can introduce mutational errors when repairing physical damage to the molecule. The repair, even with mutation, is more important to survival than restoring an exact copy, for example when repairing double-strand breaks.[25]:5.4
When multiple different alleles for a gene are present in a species's population it is called polymorphic. Most different alleles are functionally equivalent, however some alleles can give rise to different phenotypic traits. A gene's most common allele is called the wild type, and rare alleles are called mutants. The genetic variation in relative frequencies of different alleles in a population is due to both natural selection and genetic drift.[63] The wild-type allele is not necessarily the ancestor of less common alleles, nor is it necessarily fitter.
Most mutations within genes are neutral, having no effect on the organism's phenotype (silent mutations). Some mutations do not change the amino acid sequence because multiple codons encode the same amino acid (synonymous mutations). Other mutations can be neutral if they lead to amino acid sequence changes, but the protein still functions similarly with the new amino acid (e.g. conservative mutations). Many mutations, however, are deleterious or even lethal, and are removed from populations by natural selection. Genetic disorders are the result of deleterious mutations and can be due to spontaneous mutation in the affected individual, or can be inherited. Finally, a small fraction of mutations are beneficial, improving the organism's fitness and are extremely important for evolution, since their directional selection leads to adaptive evolution.[25]:7.6
Sequence homology[edit]


A sequence alignment, produced by ClustalO, of mammalian histone proteins
Genes with a most recent common ancestor, and thus a shared evolutionary ancestry, are known as homologs.[64] These genes appear either from gene duplication within an organism's genome, where they are known as paralogous genes, or are the result of divergence of the genes after a speciation event, where they are known as orthologous genes,[25]:7.6 and often perform the same or similar functions in related organisms. It is often assumed that the functions of orthologous genes are more similar than those of paralogous genes, although the difference is minimal.[65][66]
The relationship between genes can be measured by comparing the sequence alignment of their DNA.[25]:7.6 The degree of sequence similarity between homologous genes is called conserved sequence. Most changes to a gene's sequence do not affect its function and so genes accumulate mutations over time by neutral molecular evolution. Additionally, any selection on a gene will cause its sequence to diverge at a different rate. Genes under stabilizing selection are constrained and so change more slowly whereas genes under directional selection change sequence more rapidly.[67] The sequence differences between genes can be used for phylogenetic analyses to study how those genes have evolved and how the organisms they come from are related.[68][69]
Origins of new genes[edit]


Evolutionary fate of duplicate genes.
The most common source of new genes in eukaryotic lineages is gene duplication, which creates copy number variation of an existing gene in the genome.[70][71] The resulting genes (paralogs) may then diverge in sequence and in function. Sets of genes formed in this way comprise a gene family. Gene duplications and losses within a family are common and represent a major source of evolutionary biodiversity.[72] Sometimes, gene duplication may result in a nonfunctional copy of a gene, or a functional copy may be subject to mutations that result in loss of function; such nonfunctional genes are called pseudogenes.[25]:7.6
"Orphan" genes, whose sequence shows no similarity to existing genes, are less common than gene duplicates. Estimates of the number of genes with no homologs outside humans range from 18[73] to 60.[74] Two primary sources of orphan protein-coding genes are gene duplication followed by extremely rapid sequence change, such that the original relationship is undetectable by sequence comparisons, and de novo conversion of a previously non-coding sequence into a protein-coding gene.[75] De novo genes are typically shorter and simpler in structure than most eukaryotic genes, with few if any introns.[70] Over long evolutionary time periods, de novo gene birth may be responsible for a significant fraction of taxonomically-restricted gene families.[76]
Horizontal gene transfer refers to the transfer of genetic material through a mechanism other than reproduction. This mechanism is a common source of new genes in prokaryotes, sometimes thought to contribute more to genetic variation than gene duplication.[77] It is a common means of spreading antibiotic resistance, virulence, and adaptive metabolic functions.[29][78] Although horizontal gene transfer is rare in eukaryotes, likely examples have been identified of protist and alga genomes containing genes of bacterial origin.[79][80]
Genome[edit]
The genome is the total genetic material of an organism and includes both the genes and non-coding sequences.[81]
Number of genes[edit]


Representative genome sizes for plants (green), vertebrates (blue), invertebrates (red), fungus (yellow), bacteria (purple), and viruses (grey). An inset on the right shows the smaller genomes expanded 100-fold.[82][83][84][85][86][87][88][89]
The genome size, and the number of genes it encodes varies widely between organisms. The smallest genomes occur in viruses (which can have as few as 2 protein-coding genes),[90] and viroids (which act as a single non-coding RNA gene).[91] Conversely, plants can have extremely large genomes,[92] with rice containing >46,000 protein-coding genes.[93] The total number of protein-coding genes (the Earth's proteome) is estimated to be 5 million sequences.[94]
Although the number of base-pairs of DNA in the human genome has been known since the 1960s, the estimated number of genes has changed over time as definitions of genes, and methods of detecting them have been refined. Initial theoretical predictions of the number of human genes were as high as 2,000,000.[95] Early experimental measures indicated there to be 50,000–100,000 transcribed genes (expressed sequence tags).[96] Subsequently, the sequencing in the Human Genome Project indicated that many of these transcripts were alternative variants of the same genes, and the total number of protein-coding genes was revised down to ~20,000[89] with 13 genes encoded on the mitochondrial genome.[87] Of the human genome, only 1–2% consists of protein-coding genes,[97] with the remainder being 'noncoding' DNA such as introns, retrotransposons, and noncoding RNAs.[97][98] Every multicellular organism has all its genes in each cell of its body but not every gene functions in every cell .
Essential genes[edit]
Main article: Essential gene


Gene functions in the minimal genome of the synthetic organism, Syn 3.[99]
Essential genes are the set of genes thought to be critical for an organism's survival.[100] This definition assumes the abundant availability of all relevant nutrients and the absence of environmental stress. Only a small portion of an organism's genes are essential. In bacteria, an estimated 250–400 genes are essential for Escherichia coli and Bacillus subtilis, which is less than 10% of their genes.[101][102][103] Half of these genes are orthologs in both organisms and are largely involved in protein synthesis.[103] In the budding yeast Saccharomyces cerevisiae the number of essential genes is slightly higher, at 1000 genes (~20% of their genes).[104] Although the number is more difficult to measure in higher eukaryotes, mice and humans are estimated to have around 2000 essential genes (~10% of their genes).[105] The synthetic organism, Syn 3, has a minimal genome of 473 essential genes and quasi-essential genes (necessary for fast growth), although 149 have unknown function.[99]
Essential genes include Housekeeping genes (critical for basic cell functions)[106] as well as genes that are expressed at different times in the organisms development or life cycle.[107] Housekeeping genes are used as experimental controls when analysing gene expression, since they are constitutively expressed at a relatively constant level.
Genetic and genomic nomenclature[edit]
Gene nomenclature has been established by the HUGO Gene Nomenclature Committee (HGNC) for each known human gene in the form of an approved gene name and symbol (short-form abbreviation), which can be accessed through a database maintained by HGNC. Symbols are chosen to be unique, and each gene has only one symbol (although approved symbols sometimes change). Symbols are preferably kept consistent with other members of a gene family and with homologs in other species, particularly the mouse due to its role as a common model organism.[108]
Genetic engineering[edit]


Comparison of conventional plant breeding with transgenic and cisgenic genetic modification.
Main article: Genetic engineering
Genetic engineering is the modification of an organism's genome through biotechnology. Since the 1970s, a variety of techniques have been developed to specifically add, remove and edit genes in an organism.[109] Recently developed genome engineering techniques use engineered nuclease enzymes to create targeted DNA repair in a chromosome to either disrupt or edit a gene when the break is repaired.[110][111][112][113] The related term synthetic biology is sometimes used to refer to extensive genetic engineering of an organism.[114]
Genetic engineering is now a routine research tool with model organisms. For example, genes are easily added to bacteria[115] and lineages of knockout mice with a specific gene's function disrupted are used to investigate that gene's function.[116][117] Many organisms have been genetically modified for applications in agriculture, industrial biotechnology, and medicine.
For multicellular organisms, typically the embryo is engineered which grows into the adult genetically modified organism.[118] However, the genomes of cells in an adult organism can be edited using gene therapy techniques to treat genetic diseases.
See also[edit]
Copy number variation
Epigenetics
Full genome sequencing
Gene-centric view of evolution      
Gene dosage
Gene expression
Gene family
Gene nomenclature
Gene patent






2016년 6월 14일 ... 모 비영리단체의 30주년 기념행사였습니다. 야외였는데 조명 설치를 안 한 탓에 휴대전화로 불빛을 비추는 해프닝이 벌어졌죠. 정당 대표급의 VIP ...


news.chosun.com

news.chosun.com/site/data/html.../2016061301721.html









www.youtube.com

https://www.youtube.com/watch?v=1AYt_9pqQ08


images?q=tbn:ANd9GcT52TmRGi1Zb_gfCrIRkOmLVjQYcGa7FaS8oeydm_PdgK8jzW4T1bpeOGeb


2016년 1월 10일 ... https://www.facebook.com/MOHENIC Mitsubishi Pajero - Hyundai Galloper - Mohenic Garages redesign - MohenicG.


www.youtube.com

https://www.youtube.com/watch?v=1AYt_9pqQ08








www.hani.co.kr

www.hani.co.kr/arti/science/science_general/600674.html


images?q=tbn:ANd9GcTgafqY0jCCkdf5VcOUNXPajAJDD7yzW1fZb3hkEXI7APQcy21BD8rMWAny


2013년 8월 23일 ... 디엔에이(DNA) 정보를 입수해 미래를 예단하고 대비하는 시대가 도래했다. 시간 앞에 나약한 몸의 한시성이 도드라질수록 유전자정보 기술은 발전 ...


www.hani.co.kr

www.hani.co.kr/arti/science/science_general/600674.html








www.youtube.com

https://www.youtube.com/watch?v=BLetH4hPOmI


images?q=tbn:ANd9GcTU5bCd_RykiKKKfOSxtxh58usXyFce_Iv4nU8awNY5ts4JPD5S-K0SpZ8


2016년 11월 16일 ... 협찬&제휴 문의: myf21@naver.com DNAGPS 홈페이지: https://goo.gl/2Zg9CI 미래채널 MyF 홈페이지: http://www.myf21.net/ 페이스북: ...


www.youtube.com

https://www.youtube.com/watch?v=BLetH4hPOmI








blog.hyosung.com

blog.hyosung.com/3076


images?q=tbn:ANd9GcQOAa4F3kgdbZ-hcb6d726MKMFNzlA1T_jkPxGX0eD1lsp68PyVguxy5WE


[성공DNA] 세계를 품고 새로운 미래로 나아가다. 말하다/효성 비즈 2016.10.14 14: 05. 효성은 세계적 기술을 토대로 과감하게 해외 현지 법인과 생산 시설을 확대해 ...


blog.hyosung.com

blog.hyosung.com/3076








www.newsway.co.kr

www.newsway.co.kr/view.php?tp=1&ud...


images?q=tbn:ANd9GcSXwizYWEZvlyxldXaWLN7pDM7G1PRt8PAFsTNrZ22yX97_rMDHKILzECM


[3차 면세점 대전]HDC신라, 삼성·현대 DNA 품은 '미래 면세점' 선보인다. 정혜인 기자; 등록 : 2016-10-06 17:34; 수정 : 2016-10-06 18:42. 페이스북; 트위터;

댓글목록

등록된 댓글이 없습니다.

회원로그인

회원가입
사이트 내 전체검색
Copyright © CANADAKOREA.CA. All rights reserved.

Contact E-mail : canadakorea@hotmail.com